selfconstruct3d commited on
Commit
99f7952
·
verified ·
1 Parent(s): 6508073

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +10 -6
README.md CHANGED
@@ -19,7 +19,7 @@ Load the pretrained AITSecNER model directly from Hugging Face:
19
  ```python
20
  from gliner import GLiNER
21
 
22
- model = GLiNER.from_pretrained("selfconstruct3d/AITSecNER", load_tokenizer=True)
23
  ```
24
 
25
  ### Predict Entities
@@ -28,14 +28,14 @@ Define the input text and entity labels you wish to extract:
28
 
29
  ```python
30
  # Example input text
31
- text = """
32
- Upon opening Emotet maldocs, victims are greeted with fake Microsoft 365 prompt that states
33
  “THIS DOCUMENT IS PROTECTED,” and instructs victims on how to enable macros.
34
- """
35
 
36
  # Entity labels
37
  labels = [
38
- 'CLICommand/CodeSnippet', 'CON', 'DATE', 'GROUP', 'LOC',
39
  'MALWARE', 'ORG', 'SECTOR', 'TACTIC', 'TECHNIQUE', 'TOOL'
40
  ]
41
 
@@ -44,7 +44,7 @@ entities = model.predict_entities(text, labels, threshold=0.5)
44
 
45
  # Display results
46
  for entity in entities:
47
- print(f"{entity['text']} => {entity['label']}")
48
  ```
49
 
50
  ### Sample Output
@@ -54,6 +54,10 @@ Emotet => MALWARE
54
  Microsoft => ORG
55
  ```
56
 
 
 
 
 
57
  ## About
58
 
59
  **AITSecNER** leverages GLiNER to quickly and accurately extract cybersecurity-specific entities, making it highly suitable for tasks such as:
 
19
  ```python
20
  from gliner import GLiNER
21
 
22
+ model = GLiNER.from_pretrained(\"selfconstruct3d/AITSecNER\", load_tokenizer=True)
23
  ```
24
 
25
  ### Predict Entities
 
28
 
29
  ```python
30
  # Example input text
31
+ text = \"\"\"
32
+ Upon opening Emotet maldocs, victims are greeted with fake Microsoft 365 prompt that states
33
  “THIS DOCUMENT IS PROTECTED,” and instructs victims on how to enable macros.
34
+ \"\"\"
35
 
36
  # Entity labels
37
  labels = [
38
+ 'CLICommand/CodeSnippet', 'CON', 'DATE', 'GROUP', 'LOC',
39
  'MALWARE', 'ORG', 'SECTOR', 'TACTIC', 'TECHNIQUE', 'TOOL'
40
  ]
41
 
 
44
 
45
  # Display results
46
  for entity in entities:
47
+ print(f\"{entity['text']} => {entity['label']}\")
48
  ```
49
 
50
  ### Sample Output
 
54
  Microsoft => ORG
55
  ```
56
 
57
+ ## Model Details
58
+
59
+ The **AITSecNER** model was fine-tuned using the [urchade/gliner_small](https://huggingface.co/urchade/gliner_small) model from Hugging Face on the [priamai/AnnoCTR dataset](https://huggingface.co/datasets/priamai/AnnoCTR). For more details about the dataset, see the paper ["AnnoCTR: A Dataset for Detecting and Linking Entities, Tactics, and Techniques in Cyber Threat Reports"](https://arxiv.org/abs/2305.10472).
60
+
61
  ## About
62
 
63
  **AITSecNER** leverages GLiNER to quickly and accurately extract cybersecurity-specific entities, making it highly suitable for tasks such as: