ASL_Classifier / dataCollection.py
sebastiancgeorge's picture
Upload 12 files
330e2c5 verified
import cv2
from cvzone.HandTrackingModule import HandDetector
import numpy as np
import math
import time
cap = cv2.VideoCapture(0)
detector = HandDetector(maxHands=1)
offset = 20
imgSize = 300
folder = "Data/Hi"
counter = 0
while True:
success, img = cap.read()
if not success:
print("Failed to capture image")
continue
hands, img = detector.findHands(img)
if hands:
hand = hands[0]
x, y, w, h = hand['bbox']
imgWhite = np.ones((imgSize, imgSize, 3), np.uint8) * 255
try:
imgCrop = img[y - offset:y + h + offset, x - offset:x + w + offset]
if imgCrop.size == 0:
raise ValueError("Empty image crop detected")
imgCropShape = imgCrop.shape
aspectRatio = h / w
if aspectRatio > 1:
k = imgSize / h
wCal = math.ceil(k * w)
imgResize = cv2.resize(imgCrop, (wCal, imgSize))
imgResizeShape = imgResize.shape
wGap = math.ceil((imgSize - wCal) / 2)
imgWhite[:, wGap:wCal + wGap] = imgResize
else:
k = imgSize / w
hCal = math.ceil(k * h)
imgResize = cv2.resize(imgCrop, (imgSize, hCal))
imgResizeShape = imgResize.shape
hGap = math.ceil((imgSize - hCal) / 2)
imgWhite[hGap:hCal + hGap, :] = imgResize
cv2.imshow("ImageCrop", imgCrop)
cv2.imshow("ImageWhite", imgWhite)
except cv2.error as e:
print("OpenCV error:", e)
except ValueError as e:
print(e)
cv2.imshow("Image", img)
key = cv2.waitKey(1)
if key == ord("s"):
if imgCrop.size == 0:
continue
counter += 1
cv2.imwrite(f'{folder}/Image_{time.time()}.jpg', imgWhite)
print(counter)