|
import cv2
|
|
from cvzone.HandTrackingModule import HandDetector
|
|
from cvzone.ClassificationModule import Classifier
|
|
import numpy as np
|
|
import math
|
|
import pyttsx3
|
|
from collections import deque
|
|
|
|
|
|
engine = pyttsx3.init()
|
|
voices = engine.getProperty('voices')
|
|
engine.setProperty('voice', voices[1].id)
|
|
rate = engine.getProperty('rate')
|
|
engine.setProperty('rate', 125)
|
|
|
|
cap = cv2.VideoCapture(0)
|
|
detector = HandDetector(maxHands=1)
|
|
classifier = Classifier("Model/keras_model.h5", "Model/labels.txt")
|
|
offset = 20
|
|
imgSize = 300
|
|
labels = ["A", "B", "C"]
|
|
|
|
|
|
prediction_history = deque(maxlen=3)
|
|
last_prediction = None
|
|
|
|
while True:
|
|
try:
|
|
success, img = cap.read()
|
|
if not success:
|
|
print("Failed to capture image")
|
|
continue
|
|
|
|
imgOutput = img.copy()
|
|
hands, img = detector.findHands(img)
|
|
if hands:
|
|
hand = hands[0]
|
|
x, y, w, h = hand['bbox']
|
|
imgWhite = np.ones((imgSize, imgSize, 3), np.uint8) * 255
|
|
try:
|
|
imgCrop = img[y - offset:y + h + offset, x - offset:x + w + offset]
|
|
if imgCrop.size == 0:
|
|
raise ValueError("Empty image crop detected")
|
|
|
|
imgCropShape = imgCrop.shape
|
|
aspectRatio = h / w
|
|
|
|
if aspectRatio > 1:
|
|
k = imgSize / h
|
|
wCal = math.ceil(k * w)
|
|
imgResize = cv2.resize(imgCrop, (wCal, imgSize))
|
|
imgResizeShape = imgResize.shape
|
|
wGap = math.ceil((imgSize - wCal) / 2)
|
|
imgWhite[:, wGap:wCal + wGap] = imgResize
|
|
else:
|
|
k = imgSize / w
|
|
hCal = math.ceil(k * h)
|
|
imgResize = cv2.resize(imgCrop, (imgSize, hCal))
|
|
imgResizeShape = imgResize.shape
|
|
hGap = math.ceil((imgSize - hCal) / 2)
|
|
imgWhite[hGap:hCal + hGap, :] = imgResize
|
|
|
|
try:
|
|
prediction, index = classifier.getPrediction(imgWhite, draw=False)
|
|
print(prediction, index)
|
|
|
|
prediction_history.append(labels[index])
|
|
|
|
if len(prediction_history) == 3 and len(set(prediction_history)) == 1 and prediction_history[1]!=last_prediction:
|
|
last_prediction=labels[index]
|
|
engine.say(labels[index])
|
|
engine.runAndWait()
|
|
prediction_history = deque(maxlen=3)
|
|
|
|
except Exception as e:
|
|
print("Error in classifier prediction:", e)
|
|
|
|
except cv2.error as e:
|
|
print("OpenCV error:", e)
|
|
except ValueError as e:
|
|
print(e)
|
|
|
|
cv2.rectangle(imgOutput, (x - offset, y - offset - 50),
|
|
(x - offset + 90, y - offset - 50 + 50), (255, 0, 255), cv2.FILLED)
|
|
cv2.putText(imgOutput, labels[index], (x, y - 26), cv2.FONT_HERSHEY_COMPLEX, 1.7, (255, 255, 255), 2)
|
|
cv2.rectangle(imgOutput, (x - offset, y - offset),
|
|
(x + w + offset, y + h + offset), (255, 0, 255), 4)
|
|
cv2.imshow("ImageCrop", imgCrop)
|
|
cv2.imshow("ImageWhite", imgWhite)
|
|
|
|
cv2.imshow("Image", imgOutput)
|
|
cv2.waitKey(1)
|
|
|
|
except Exception as e:
|
|
print("Unexpected error:", e)
|
|
|