pushing model
Browse files- README.md +85 -0
- events.out.tfevents.1700813954.4090-171.1716227.0 +3 -0
- poetry.lock +0 -0
- ppo_fix_continuous_action.cleanrl_model +0 -0
- ppo_fix_continuous_action.py +572 -0
- pyproject.toml +108 -0
- replay.mp4 +0 -0
- videos/Swimmer-v4__ppo_fix_continuous_action__1__1700813947-eval/rl-video-episode-0.mp4 +0 -0
- videos/Swimmer-v4__ppo_fix_continuous_action__1__1700813947-eval/rl-video-episode-1.mp4 +0 -0
- videos/Swimmer-v4__ppo_fix_continuous_action__1__1700813947-eval/rl-video-episode-8.mp4 +0 -0
README.md
ADDED
|
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
tags:
|
| 3 |
+
- Swimmer-v4
|
| 4 |
+
- deep-reinforcement-learning
|
| 5 |
+
- reinforcement-learning
|
| 6 |
+
- custom-implementation
|
| 7 |
+
library_name: cleanrl
|
| 8 |
+
model-index:
|
| 9 |
+
- name: PPO
|
| 10 |
+
results:
|
| 11 |
+
- task:
|
| 12 |
+
type: reinforcement-learning
|
| 13 |
+
name: reinforcement-learning
|
| 14 |
+
dataset:
|
| 15 |
+
name: Swimmer-v4
|
| 16 |
+
type: Swimmer-v4
|
| 17 |
+
metrics:
|
| 18 |
+
- type: mean_reward
|
| 19 |
+
value: 124.70 +/- 1.56
|
| 20 |
+
name: mean_reward
|
| 21 |
+
verified: false
|
| 22 |
+
---
|
| 23 |
+
|
| 24 |
+
# (CleanRL) **PPO** Agent Playing **Swimmer-v4**
|
| 25 |
+
|
| 26 |
+
This is a trained model of a PPO agent playing Swimmer-v4.
|
| 27 |
+
The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be
|
| 28 |
+
found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/ppo_fix_continuous_action.py).
|
| 29 |
+
|
| 30 |
+
## Get Started
|
| 31 |
+
|
| 32 |
+
To use this model, please install the `cleanrl` package with the following command:
|
| 33 |
+
|
| 34 |
+
```
|
| 35 |
+
pip install "cleanrl[ppo_fix_continuous_action]"
|
| 36 |
+
python -m cleanrl_utils.enjoy --exp-name ppo_fix_continuous_action --env-id Swimmer-v4
|
| 37 |
+
```
|
| 38 |
+
|
| 39 |
+
Please refer to the [documentation](https://docs.cleanrl.dev/get-started/zoo/) for more detail.
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
## Command to reproduce the training
|
| 43 |
+
|
| 44 |
+
```bash
|
| 45 |
+
curl -OL https://huggingface.co/sdpkjc/Swimmer-v4-ppo_fix_continuous_action-seed1/raw/main/ppo_fix_continuous_action.py
|
| 46 |
+
curl -OL https://huggingface.co/sdpkjc/Swimmer-v4-ppo_fix_continuous_action-seed1/raw/main/pyproject.toml
|
| 47 |
+
curl -OL https://huggingface.co/sdpkjc/Swimmer-v4-ppo_fix_continuous_action-seed1/raw/main/poetry.lock
|
| 48 |
+
poetry install --all-extras
|
| 49 |
+
python ppo_fix_continuous_action.py --save-model --hf-entity sdpkjc --seed 1 --upload-model --track --env-id Swimmer-v4
|
| 50 |
+
```
|
| 51 |
+
|
| 52 |
+
# Hyperparameters
|
| 53 |
+
```python
|
| 54 |
+
{'anneal_lr': True,
|
| 55 |
+
'batch_size': 2048,
|
| 56 |
+
'capture_video': False,
|
| 57 |
+
'clip_coef': 0.2,
|
| 58 |
+
'clip_vloss': True,
|
| 59 |
+
'cuda': True,
|
| 60 |
+
'ent_coef': 0.0,
|
| 61 |
+
'env_id': 'Swimmer-v4',
|
| 62 |
+
'exp_name': 'ppo_fix_continuous_action',
|
| 63 |
+
'gae_lambda': 0.95,
|
| 64 |
+
'gamma': 0.99,
|
| 65 |
+
'hf_entity': 'sdpkjc',
|
| 66 |
+
'learning_rate': 0.0003,
|
| 67 |
+
'max_grad_norm': 0.5,
|
| 68 |
+
'minibatch_size': 64,
|
| 69 |
+
'norm_adv': True,
|
| 70 |
+
'num_envs': 1,
|
| 71 |
+
'num_minibatches': 32,
|
| 72 |
+
'num_steps': 2048,
|
| 73 |
+
'save_model': True,
|
| 74 |
+
'seed': 1,
|
| 75 |
+
'target_kl': None,
|
| 76 |
+
'torch_deterministic': True,
|
| 77 |
+
'total_timesteps': 1000000,
|
| 78 |
+
'track': True,
|
| 79 |
+
'update_epochs': 10,
|
| 80 |
+
'upload_model': True,
|
| 81 |
+
'vf_coef': 0.5,
|
| 82 |
+
'wandb_entity': None,
|
| 83 |
+
'wandb_project_name': 'cleanRL'}
|
| 84 |
+
```
|
| 85 |
+
|
events.out.tfevents.1700813954.4090-171.1716227.0
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:5f5a2e881d890ddec39b87458115a8a1ff9d2c97eb90579eff8e19c390ddfb09
|
| 3 |
+
size 376390
|
poetry.lock
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
ppo_fix_continuous_action.cleanrl_model
ADDED
|
Binary file (44.4 kB). View file
|
|
|
ppo_fix_continuous_action.py
ADDED
|
@@ -0,0 +1,572 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# docs and experiment results can be found at https://docs.cleanrl.dev/rl-algorithms/ppo/#ppo_continuous_actionpy
|
| 2 |
+
import argparse
|
| 3 |
+
import copy
|
| 4 |
+
import os
|
| 5 |
+
import random
|
| 6 |
+
import time
|
| 7 |
+
from distutils.util import strtobool
|
| 8 |
+
from typing import Callable
|
| 9 |
+
|
| 10 |
+
import gymnasium as gym
|
| 11 |
+
import numpy as np
|
| 12 |
+
import torch
|
| 13 |
+
import torch.nn as nn
|
| 14 |
+
import torch.optim as optim
|
| 15 |
+
from torch.distributions.normal import Normal
|
| 16 |
+
from torch.utils.tensorboard import SummaryWriter
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
def parse_args():
|
| 20 |
+
# fmt: off
|
| 21 |
+
parser = argparse.ArgumentParser()
|
| 22 |
+
parser.add_argument("--exp-name", type=str, default=os.path.basename(__file__).rstrip(".py"),
|
| 23 |
+
help="the name of this experiment")
|
| 24 |
+
parser.add_argument("--seed", type=int, default=1,
|
| 25 |
+
help="seed of the experiment")
|
| 26 |
+
parser.add_argument("--torch-deterministic", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True,
|
| 27 |
+
help="if toggled, `torch.backends.cudnn.deterministic=False`")
|
| 28 |
+
parser.add_argument("--cuda", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True,
|
| 29 |
+
help="if toggled, cuda will be enabled by default")
|
| 30 |
+
parser.add_argument("--track", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True,
|
| 31 |
+
help="if toggled, this experiment will be tracked with Weights and Biases")
|
| 32 |
+
parser.add_argument("--wandb-project-name", type=str, default="cleanRL",
|
| 33 |
+
help="the wandb's project name")
|
| 34 |
+
parser.add_argument("--wandb-entity", type=str, default=None,
|
| 35 |
+
help="the entity (team) of wandb's project")
|
| 36 |
+
parser.add_argument("--capture-video", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True,
|
| 37 |
+
help="whether to capture videos of the agent performances (check out `videos` folder)")
|
| 38 |
+
parser.add_argument("--save-model", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True,
|
| 39 |
+
help="whether to save model into the `runs/{run_name}` folder")
|
| 40 |
+
parser.add_argument("--upload-model", type=lambda x: bool(strtobool(x)), default=False, nargs="?", const=True,
|
| 41 |
+
help="whether to upload the saved model to huggingface")
|
| 42 |
+
parser.add_argument("--hf-entity", type=str, default="",
|
| 43 |
+
help="the user or org name of the model repository from the Hugging Face Hub")
|
| 44 |
+
|
| 45 |
+
# Algorithm specific arguments
|
| 46 |
+
parser.add_argument("--env-id", type=str, default="HalfCheetah-v4",
|
| 47 |
+
help="the id of the environment")
|
| 48 |
+
parser.add_argument("--total-timesteps", type=int, default=1000000,
|
| 49 |
+
help="total timesteps of the experiments")
|
| 50 |
+
parser.add_argument("--learning-rate", type=float, default=3e-4,
|
| 51 |
+
help="the learning rate of the optimizer")
|
| 52 |
+
parser.add_argument("--num-envs", type=int, default=1,
|
| 53 |
+
help="the number of parallel game environments")
|
| 54 |
+
parser.add_argument("--num-steps", type=int, default=2048,
|
| 55 |
+
help="the number of steps to run in each environment per policy rollout")
|
| 56 |
+
parser.add_argument("--anneal-lr", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True,
|
| 57 |
+
help="Toggle learning rate annealing for policy and value networks")
|
| 58 |
+
parser.add_argument("--gamma", type=float, default=0.99,
|
| 59 |
+
help="the discount factor gamma")
|
| 60 |
+
parser.add_argument("--gae-lambda", type=float, default=0.95,
|
| 61 |
+
help="the lambda for the general advantage estimation")
|
| 62 |
+
parser.add_argument("--num-minibatches", type=int, default=32,
|
| 63 |
+
help="the number of mini-batches")
|
| 64 |
+
parser.add_argument("--update-epochs", type=int, default=10,
|
| 65 |
+
help="the K epochs to update the policy")
|
| 66 |
+
parser.add_argument("--norm-adv", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True,
|
| 67 |
+
help="Toggles advantages normalization")
|
| 68 |
+
parser.add_argument("--clip-coef", type=float, default=0.2,
|
| 69 |
+
help="the surrogate clipping coefficient")
|
| 70 |
+
parser.add_argument("--clip-vloss", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True,
|
| 71 |
+
help="Toggles whether or not to use a clipped loss for the value function, as per the paper.")
|
| 72 |
+
parser.add_argument("--ent-coef", type=float, default=0.0,
|
| 73 |
+
help="coefficient of the entropy")
|
| 74 |
+
parser.add_argument("--vf-coef", type=float, default=0.5,
|
| 75 |
+
help="coefficient of the value function")
|
| 76 |
+
parser.add_argument("--max-grad-norm", type=float, default=0.5,
|
| 77 |
+
help="the maximum norm for the gradient clipping")
|
| 78 |
+
parser.add_argument("--target-kl", type=float, default=None,
|
| 79 |
+
help="the target KL divergence threshold")
|
| 80 |
+
args = parser.parse_args()
|
| 81 |
+
args.batch_size = int(args.num_envs * args.num_steps)
|
| 82 |
+
args.minibatch_size = int(args.batch_size // args.num_minibatches)
|
| 83 |
+
# fmt: on
|
| 84 |
+
return args
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
# https://github.com/Farama-Foundation/Gymnasium/blob/main/gymnasium/wrappers/normalize.py
|
| 88 |
+
class RunningMeanStd(nn.Module):
|
| 89 |
+
def __init__(self, epsilon=1e-4, shape=()):
|
| 90 |
+
super().__init__()
|
| 91 |
+
self.register_buffer("mean", torch.zeros(shape, dtype=torch.float64))
|
| 92 |
+
self.register_buffer("var", torch.ones(shape, dtype=torch.float64))
|
| 93 |
+
self.register_buffer("count", torch.tensor(epsilon, dtype=torch.float64))
|
| 94 |
+
|
| 95 |
+
def update(self, x):
|
| 96 |
+
x = torch.as_tensor(x, dtype=torch.float64).to(self.mean.device)
|
| 97 |
+
batch_mean = torch.mean(x, dim=0).to(self.mean.device)
|
| 98 |
+
batch_var = torch.var(x, dim=0, unbiased=False).to(self.mean.device)
|
| 99 |
+
batch_count = x.shape[0]
|
| 100 |
+
|
| 101 |
+
self.mean, self.var, self.count = update_mean_var_count_from_moments(
|
| 102 |
+
self.mean, self.var, self.count, batch_mean, batch_var, batch_count
|
| 103 |
+
)
|
| 104 |
+
|
| 105 |
+
|
| 106 |
+
def update_mean_var_count_from_moments(mean, var, count, batch_mean, batch_var, batch_count):
|
| 107 |
+
delta = batch_mean - mean
|
| 108 |
+
tot_count = count + batch_count
|
| 109 |
+
|
| 110 |
+
new_mean = mean + delta * batch_count / tot_count
|
| 111 |
+
m_a = var * count
|
| 112 |
+
m_b = batch_var * batch_count
|
| 113 |
+
M2 = m_a + m_b + torch.square(delta) * count * batch_count / tot_count
|
| 114 |
+
new_var = M2 / tot_count
|
| 115 |
+
new_count = tot_count
|
| 116 |
+
|
| 117 |
+
return new_mean, new_var, new_count
|
| 118 |
+
|
| 119 |
+
|
| 120 |
+
class NormalizeObservation(gym.Wrapper, gym.utils.RecordConstructorArgs):
|
| 121 |
+
def __init__(self, env: gym.Env, epsilon: float = 1e-8):
|
| 122 |
+
gym.utils.RecordConstructorArgs.__init__(self, epsilon=epsilon)
|
| 123 |
+
gym.Wrapper.__init__(self, env)
|
| 124 |
+
|
| 125 |
+
try:
|
| 126 |
+
self.num_envs = self.get_wrapper_attr("num_envs")
|
| 127 |
+
self.is_vector_env = self.get_wrapper_attr("is_vector_env")
|
| 128 |
+
except AttributeError:
|
| 129 |
+
self.num_envs = 1
|
| 130 |
+
self.is_vector_env = False
|
| 131 |
+
|
| 132 |
+
if self.is_vector_env:
|
| 133 |
+
self.obs_rms = RunningMeanStd(shape=self.single_observation_space.shape)
|
| 134 |
+
else:
|
| 135 |
+
self.obs_rms = RunningMeanStd(shape=self.observation_space.shape)
|
| 136 |
+
self.epsilon = epsilon
|
| 137 |
+
|
| 138 |
+
self.enable = True
|
| 139 |
+
self.freeze = False
|
| 140 |
+
|
| 141 |
+
def step(self, action):
|
| 142 |
+
obs, rews, terminateds, truncateds, infos = self.env.step(action)
|
| 143 |
+
if self.is_vector_env:
|
| 144 |
+
obs = self.normalize(obs)
|
| 145 |
+
else:
|
| 146 |
+
obs = self.normalize(np.array([obs]))[0]
|
| 147 |
+
return obs, rews, terminateds, truncateds, infos
|
| 148 |
+
|
| 149 |
+
def reset(self, **kwargs):
|
| 150 |
+
obs, info = self.env.reset(**kwargs)
|
| 151 |
+
|
| 152 |
+
if self.is_vector_env:
|
| 153 |
+
return self.normalize(obs), info
|
| 154 |
+
else:
|
| 155 |
+
return self.normalize(np.array([obs]))[0], info
|
| 156 |
+
|
| 157 |
+
def normalize(self, obs):
|
| 158 |
+
if not self.freeze:
|
| 159 |
+
self.obs_rms.update(obs)
|
| 160 |
+
if self.enable:
|
| 161 |
+
return (obs - self.obs_rms.mean.cpu().numpy()) / np.sqrt(self.obs_rms.var.cpu().numpy() + self.epsilon)
|
| 162 |
+
return obs
|
| 163 |
+
|
| 164 |
+
|
| 165 |
+
class NormalizeReward(gym.core.Wrapper, gym.utils.RecordConstructorArgs):
|
| 166 |
+
def __init__(
|
| 167 |
+
self,
|
| 168 |
+
env: gym.Env,
|
| 169 |
+
gamma: float = 0.99,
|
| 170 |
+
epsilon: float = 1e-8,
|
| 171 |
+
):
|
| 172 |
+
gym.utils.RecordConstructorArgs.__init__(self, gamma=gamma, epsilon=epsilon)
|
| 173 |
+
gym.Wrapper.__init__(self, env)
|
| 174 |
+
|
| 175 |
+
try:
|
| 176 |
+
self.num_envs = self.get_wrapper_attr("num_envs")
|
| 177 |
+
self.is_vector_env = self.get_wrapper_attr("is_vector_env")
|
| 178 |
+
except AttributeError:
|
| 179 |
+
self.num_envs = 1
|
| 180 |
+
self.is_vector_env = False
|
| 181 |
+
|
| 182 |
+
self.return_rms = RunningMeanStd(shape=())
|
| 183 |
+
self.returns = np.zeros(self.num_envs)
|
| 184 |
+
self.gamma = gamma
|
| 185 |
+
self.epsilon = epsilon
|
| 186 |
+
|
| 187 |
+
self.enable = True
|
| 188 |
+
self.freeze = False
|
| 189 |
+
|
| 190 |
+
def step(self, action):
|
| 191 |
+
obs, rews, terminateds, truncateds, infos = self.env.step(action)
|
| 192 |
+
if not self.is_vector_env:
|
| 193 |
+
rews = np.array([rews])
|
| 194 |
+
self.returns = self.returns * self.gamma * (1 - terminateds) + rews
|
| 195 |
+
rews = self.normalize(rews)
|
| 196 |
+
if not self.is_vector_env:
|
| 197 |
+
rews = rews[0]
|
| 198 |
+
return obs, rews, terminateds, truncateds, infos
|
| 199 |
+
|
| 200 |
+
def reset(self, **kwargs):
|
| 201 |
+
self.returns = np.zeros(self.num_envs)
|
| 202 |
+
return self.env.reset(**kwargs)
|
| 203 |
+
|
| 204 |
+
def normalize(self, rews):
|
| 205 |
+
if not self.freeze:
|
| 206 |
+
self.return_rms.update(self.returns)
|
| 207 |
+
if self.enable:
|
| 208 |
+
return rews / np.sqrt(self.return_rms.var.cpu().numpy() + self.epsilon)
|
| 209 |
+
return rews
|
| 210 |
+
|
| 211 |
+
def get_returns(self):
|
| 212 |
+
return self.returns
|
| 213 |
+
|
| 214 |
+
|
| 215 |
+
def evaluate(
|
| 216 |
+
model_path: str,
|
| 217 |
+
make_env: Callable,
|
| 218 |
+
env_id: str,
|
| 219 |
+
eval_episodes: int,
|
| 220 |
+
run_name: str,
|
| 221 |
+
Model: torch.nn.Module,
|
| 222 |
+
device: torch.device = torch.device("cpu"),
|
| 223 |
+
capture_video: bool = True,
|
| 224 |
+
):
|
| 225 |
+
envs = gym.vector.SyncVectorEnv([make_env(env_id, 0, capture_video, run_name)])
|
| 226 |
+
agent = Model(envs).to(device)
|
| 227 |
+
agent.load_state_dict(torch.load(model_path, map_location=device))
|
| 228 |
+
agent.eval()
|
| 229 |
+
envs = gym.vector.SyncVectorEnv([make_env(env_id, 0, capture_video, run_name, agent.obs_rms)])
|
| 230 |
+
|
| 231 |
+
obs, _ = envs.reset()
|
| 232 |
+
episodic_returns = []
|
| 233 |
+
while len(episodic_returns) < eval_episodes:
|
| 234 |
+
actions, _, _, _ = agent.get_action_and_value(torch.Tensor(obs).to(device))
|
| 235 |
+
next_obs, _, _, _, infos = envs.step(actions.cpu().numpy())
|
| 236 |
+
if "final_info" in infos:
|
| 237 |
+
for info in infos["final_info"]:
|
| 238 |
+
if "episode" not in info:
|
| 239 |
+
continue
|
| 240 |
+
print(f"eval_episode={len(episodic_returns)}, episodic_return={info['episode']['r']}")
|
| 241 |
+
episodic_returns += [info["episode"]["r"]]
|
| 242 |
+
obs = next_obs
|
| 243 |
+
|
| 244 |
+
return episodic_returns
|
| 245 |
+
|
| 246 |
+
|
| 247 |
+
def make_env(env_id, idx, capture_video, run_name, gamma):
|
| 248 |
+
def thunk():
|
| 249 |
+
if capture_video:
|
| 250 |
+
env = gym.make(env_id, render_mode="rgb_array")
|
| 251 |
+
else:
|
| 252 |
+
env = gym.make(env_id)
|
| 253 |
+
env = gym.wrappers.FlattenObservation(env) # deal with dm_control's Dict observation space
|
| 254 |
+
env = gym.wrappers.RecordEpisodeStatistics(env)
|
| 255 |
+
if capture_video:
|
| 256 |
+
if idx == 0:
|
| 257 |
+
env = gym.wrappers.RecordVideo(env, f"videos/{run_name}")
|
| 258 |
+
env = gym.wrappers.ClipAction(env)
|
| 259 |
+
env = NormalizeObservation(env)
|
| 260 |
+
env = gym.wrappers.TransformObservation(env, lambda obs: np.clip(obs, -10, 10))
|
| 261 |
+
env = NormalizeReward(env, gamma=gamma)
|
| 262 |
+
env = gym.wrappers.TransformReward(env, lambda reward: np.clip(reward, -10, 10))
|
| 263 |
+
return env
|
| 264 |
+
|
| 265 |
+
return thunk
|
| 266 |
+
|
| 267 |
+
|
| 268 |
+
def make_eval_env(env_id, idx, capture_video, run_name, obs_rms=None):
|
| 269 |
+
def thunk():
|
| 270 |
+
if capture_video:
|
| 271 |
+
env = gym.make(env_id, render_mode="rgb_array")
|
| 272 |
+
else:
|
| 273 |
+
env = gym.make(env_id)
|
| 274 |
+
env = gym.wrappers.FlattenObservation(env) # deal with dm_control's Dict observation space
|
| 275 |
+
env = gym.wrappers.RecordEpisodeStatistics(env)
|
| 276 |
+
if capture_video:
|
| 277 |
+
if idx == 0:
|
| 278 |
+
env = gym.wrappers.RecordVideo(env, f"videos/{run_name}")
|
| 279 |
+
env = gym.wrappers.ClipAction(env)
|
| 280 |
+
env = NormalizeObservation(env)
|
| 281 |
+
if obs_rms is not None:
|
| 282 |
+
env.obs_rms = copy.deepcopy(obs_rms)
|
| 283 |
+
env.freeze = True
|
| 284 |
+
env = gym.wrappers.TransformObservation(env, lambda obs: np.clip(obs, -10, 10))
|
| 285 |
+
return env
|
| 286 |
+
|
| 287 |
+
return thunk
|
| 288 |
+
|
| 289 |
+
|
| 290 |
+
def get_rms(env):
|
| 291 |
+
obs_rms, return_rms = None, None
|
| 292 |
+
env_point = env
|
| 293 |
+
while hasattr(env_point, "env"):
|
| 294 |
+
if isinstance(env_point, NormalizeObservation):
|
| 295 |
+
obs_rms = copy.deepcopy(env_point.obs_rms)
|
| 296 |
+
break
|
| 297 |
+
env_point = env_point.env
|
| 298 |
+
else:
|
| 299 |
+
raise RuntimeError("can't find NormalizeObservation")
|
| 300 |
+
|
| 301 |
+
env_point = env
|
| 302 |
+
while hasattr(env_point, "env"):
|
| 303 |
+
if isinstance(env_point, NormalizeReward):
|
| 304 |
+
return_rms = copy.deepcopy(env_point.return_rms)
|
| 305 |
+
break
|
| 306 |
+
env_point = env_point.env
|
| 307 |
+
else:
|
| 308 |
+
raise RuntimeError("can't find NormalizeReward")
|
| 309 |
+
|
| 310 |
+
return obs_rms, return_rms
|
| 311 |
+
|
| 312 |
+
|
| 313 |
+
def layer_init(layer, std=np.sqrt(2), bias_const=0.0):
|
| 314 |
+
torch.nn.init.orthogonal_(layer.weight, std)
|
| 315 |
+
torch.nn.init.constant_(layer.bias, bias_const)
|
| 316 |
+
return layer
|
| 317 |
+
|
| 318 |
+
|
| 319 |
+
class Agent(nn.Module):
|
| 320 |
+
def __init__(self, envs):
|
| 321 |
+
super().__init__()
|
| 322 |
+
self.critic = nn.Sequential(
|
| 323 |
+
layer_init(nn.Linear(np.array(envs.single_observation_space.shape).prod(), 64)),
|
| 324 |
+
nn.Tanh(),
|
| 325 |
+
layer_init(nn.Linear(64, 64)),
|
| 326 |
+
nn.Tanh(),
|
| 327 |
+
layer_init(nn.Linear(64, 1), std=1.0),
|
| 328 |
+
)
|
| 329 |
+
self.actor_mean = nn.Sequential(
|
| 330 |
+
layer_init(nn.Linear(np.array(envs.single_observation_space.shape).prod(), 64)),
|
| 331 |
+
nn.Tanh(),
|
| 332 |
+
layer_init(nn.Linear(64, 64)),
|
| 333 |
+
nn.Tanh(),
|
| 334 |
+
layer_init(nn.Linear(64, np.prod(envs.single_action_space.shape)), std=0.01),
|
| 335 |
+
)
|
| 336 |
+
self.actor_logstd = nn.Parameter(torch.zeros(1, np.prod(envs.single_action_space.shape)))
|
| 337 |
+
self.obs_rms = RunningMeanStd(shape=envs.single_observation_space.shape)
|
| 338 |
+
|
| 339 |
+
def get_value(self, x):
|
| 340 |
+
return self.critic(x)
|
| 341 |
+
|
| 342 |
+
def get_action_and_value(self, x, action=None):
|
| 343 |
+
action_mean = self.actor_mean(x)
|
| 344 |
+
action_logstd = self.actor_logstd.expand_as(action_mean)
|
| 345 |
+
action_std = torch.exp(action_logstd)
|
| 346 |
+
probs = Normal(action_mean, action_std)
|
| 347 |
+
if action is None:
|
| 348 |
+
action = probs.sample()
|
| 349 |
+
return action, probs.log_prob(action).sum(1), probs.entropy().sum(1), self.critic(x)
|
| 350 |
+
|
| 351 |
+
|
| 352 |
+
if __name__ == "__main__":
|
| 353 |
+
args = parse_args()
|
| 354 |
+
run_name = f"{args.env_id}__{args.exp_name}__{args.seed}__{int(time.time())}"
|
| 355 |
+
if args.track:
|
| 356 |
+
import wandb
|
| 357 |
+
|
| 358 |
+
wandb.init(
|
| 359 |
+
project=args.wandb_project_name,
|
| 360 |
+
entity=args.wandb_entity,
|
| 361 |
+
sync_tensorboard=True,
|
| 362 |
+
config=vars(args),
|
| 363 |
+
name=run_name,
|
| 364 |
+
monitor_gym=True,
|
| 365 |
+
save_code=True,
|
| 366 |
+
)
|
| 367 |
+
writer = SummaryWriter(f"runs/{run_name}")
|
| 368 |
+
writer.add_text(
|
| 369 |
+
"hyperparameters",
|
| 370 |
+
"|param|value|\n|-|-|\n%s" % ("\n".join([f"|{key}|{value}|" for key, value in vars(args).items()])),
|
| 371 |
+
)
|
| 372 |
+
|
| 373 |
+
# TRY NOT TO MODIFY: seeding
|
| 374 |
+
random.seed(args.seed)
|
| 375 |
+
np.random.seed(args.seed)
|
| 376 |
+
torch.manual_seed(args.seed)
|
| 377 |
+
torch.backends.cudnn.deterministic = args.torch_deterministic
|
| 378 |
+
|
| 379 |
+
device = torch.device("cuda" if torch.cuda.is_available() and args.cuda else "cpu")
|
| 380 |
+
|
| 381 |
+
# env setup
|
| 382 |
+
envs = gym.vector.SyncVectorEnv(
|
| 383 |
+
[make_env(args.env_id, i, args.capture_video, run_name, args.gamma) for i in range(args.num_envs)]
|
| 384 |
+
)
|
| 385 |
+
assert isinstance(envs.single_action_space, gym.spaces.Box), "only continuous action space is supported"
|
| 386 |
+
|
| 387 |
+
agent = Agent(envs).to(device)
|
| 388 |
+
optimizer = optim.Adam(agent.parameters(), lr=args.learning_rate, eps=1e-5)
|
| 389 |
+
|
| 390 |
+
# ALGO Logic: Storage setup
|
| 391 |
+
obs = torch.zeros((args.num_steps, args.num_envs) + envs.single_observation_space.shape).to(device)
|
| 392 |
+
actions = torch.zeros((args.num_steps, args.num_envs) + envs.single_action_space.shape).to(device)
|
| 393 |
+
logprobs = torch.zeros((args.num_steps, args.num_envs)).to(device)
|
| 394 |
+
rewards = torch.zeros((args.num_steps, args.num_envs)).to(device)
|
| 395 |
+
dones = torch.zeros((args.num_steps, args.num_envs)).to(device)
|
| 396 |
+
values = torch.zeros((args.num_steps, args.num_envs)).to(device)
|
| 397 |
+
|
| 398 |
+
# TRY NOT TO MODIFY: start the game
|
| 399 |
+
global_step = 0
|
| 400 |
+
start_time = time.time()
|
| 401 |
+
next_obs, _ = envs.reset(seed=args.seed)
|
| 402 |
+
next_obs = torch.Tensor(next_obs).to(device)
|
| 403 |
+
next_done = torch.zeros(args.num_envs).to(device)
|
| 404 |
+
num_updates = args.total_timesteps // args.batch_size
|
| 405 |
+
|
| 406 |
+
for update in range(1, num_updates + 1):
|
| 407 |
+
# Annealing the rate if instructed to do so.
|
| 408 |
+
if args.anneal_lr:
|
| 409 |
+
frac = 1.0 - (update - 1.0) / num_updates
|
| 410 |
+
lrnow = frac * args.learning_rate
|
| 411 |
+
optimizer.param_groups[0]["lr"] = lrnow
|
| 412 |
+
|
| 413 |
+
for step in range(0, args.num_steps):
|
| 414 |
+
global_step += 1 * args.num_envs
|
| 415 |
+
obs[step] = next_obs
|
| 416 |
+
dones[step] = next_done
|
| 417 |
+
|
| 418 |
+
# ALGO LOGIC: action logic
|
| 419 |
+
with torch.no_grad():
|
| 420 |
+
action, logprob, _, value = agent.get_action_and_value(next_obs)
|
| 421 |
+
values[step] = value.flatten()
|
| 422 |
+
actions[step] = action
|
| 423 |
+
logprobs[step] = logprob
|
| 424 |
+
|
| 425 |
+
# TRY NOT TO MODIFY: execute the game and log data.
|
| 426 |
+
next_obs, reward, terminations, truncations, infos = envs.step(action.cpu().numpy())
|
| 427 |
+
done = np.logical_or(terminations, truncations)
|
| 428 |
+
rewards[step] = torch.tensor(reward).to(device).view(-1)
|
| 429 |
+
next_obs, next_done = torch.Tensor(next_obs).to(device), torch.Tensor(done).to(device)
|
| 430 |
+
|
| 431 |
+
# https://github.com/DLR-RM/stable-baselines3/pull/658
|
| 432 |
+
for idx, trunc in enumerate(truncations):
|
| 433 |
+
if trunc:
|
| 434 |
+
real_next_obs = infos["final_observation"][idx]
|
| 435 |
+
with torch.no_grad():
|
| 436 |
+
terminal_value = agent.get_value(torch.Tensor(real_next_obs).to(device)).reshape(1, -1)[0][0]
|
| 437 |
+
rewards[step][idx] += args.gamma * terminal_value
|
| 438 |
+
|
| 439 |
+
# Only print when at least 1 env is done
|
| 440 |
+
if "final_info" not in infos:
|
| 441 |
+
continue
|
| 442 |
+
|
| 443 |
+
for info in infos["final_info"]:
|
| 444 |
+
# Skip the envs that are not done
|
| 445 |
+
if info is None:
|
| 446 |
+
continue
|
| 447 |
+
print(f"global_step={global_step}, episodic_return={info['episode']['r']}")
|
| 448 |
+
writer.add_scalar("charts/episodic_return", info["episode"]["r"], global_step)
|
| 449 |
+
writer.add_scalar("charts/episodic_length", info["episode"]["l"], global_step)
|
| 450 |
+
|
| 451 |
+
# bootstrap value if not done
|
| 452 |
+
with torch.no_grad():
|
| 453 |
+
next_value = agent.get_value(next_obs).reshape(1, -1)
|
| 454 |
+
advantages = torch.zeros_like(rewards).to(device)
|
| 455 |
+
lastgaelam = 0
|
| 456 |
+
for t in reversed(range(args.num_steps)):
|
| 457 |
+
if t == args.num_steps - 1:
|
| 458 |
+
nextnonterminal = 1.0 - next_done
|
| 459 |
+
nextvalues = next_value
|
| 460 |
+
else:
|
| 461 |
+
nextnonterminal = 1.0 - dones[t + 1]
|
| 462 |
+
nextvalues = values[t + 1]
|
| 463 |
+
delta = rewards[t] + args.gamma * nextvalues * nextnonterminal - values[t]
|
| 464 |
+
advantages[t] = lastgaelam = delta + args.gamma * args.gae_lambda * nextnonterminal * lastgaelam
|
| 465 |
+
returns = advantages + values
|
| 466 |
+
|
| 467 |
+
# flatten the batch
|
| 468 |
+
b_obs = obs.reshape((-1,) + envs.single_observation_space.shape)
|
| 469 |
+
b_logprobs = logprobs.reshape(-1)
|
| 470 |
+
b_actions = actions.reshape((-1,) + envs.single_action_space.shape)
|
| 471 |
+
b_advantages = advantages.reshape(-1)
|
| 472 |
+
b_returns = returns.reshape(-1)
|
| 473 |
+
b_values = values.reshape(-1)
|
| 474 |
+
|
| 475 |
+
# Optimizing the policy and value network
|
| 476 |
+
b_inds = np.arange(args.batch_size)
|
| 477 |
+
clipfracs = []
|
| 478 |
+
for epoch in range(args.update_epochs):
|
| 479 |
+
np.random.shuffle(b_inds)
|
| 480 |
+
for start in range(0, args.batch_size, args.minibatch_size):
|
| 481 |
+
end = start + args.minibatch_size
|
| 482 |
+
mb_inds = b_inds[start:end]
|
| 483 |
+
|
| 484 |
+
_, newlogprob, entropy, newvalue = agent.get_action_and_value(b_obs[mb_inds], b_actions[mb_inds])
|
| 485 |
+
logratio = newlogprob - b_logprobs[mb_inds]
|
| 486 |
+
ratio = logratio.exp()
|
| 487 |
+
|
| 488 |
+
with torch.no_grad():
|
| 489 |
+
# calculate approx_kl http://joschu.net/blog/kl-approx.html
|
| 490 |
+
old_approx_kl = (-logratio).mean()
|
| 491 |
+
approx_kl = ((ratio - 1) - logratio).mean()
|
| 492 |
+
clipfracs += [((ratio - 1.0).abs() > args.clip_coef).float().mean().item()]
|
| 493 |
+
|
| 494 |
+
mb_advantages = b_advantages[mb_inds]
|
| 495 |
+
if args.norm_adv:
|
| 496 |
+
mb_advantages = (mb_advantages - mb_advantages.mean()) / (mb_advantages.std() + 1e-8)
|
| 497 |
+
|
| 498 |
+
# Policy loss
|
| 499 |
+
pg_loss1 = -mb_advantages * ratio
|
| 500 |
+
pg_loss2 = -mb_advantages * torch.clamp(ratio, 1 - args.clip_coef, 1 + args.clip_coef)
|
| 501 |
+
pg_loss = torch.max(pg_loss1, pg_loss2).mean()
|
| 502 |
+
|
| 503 |
+
# Value loss
|
| 504 |
+
newvalue = newvalue.view(-1)
|
| 505 |
+
if args.clip_vloss:
|
| 506 |
+
v_loss_unclipped = (newvalue - b_returns[mb_inds]) ** 2
|
| 507 |
+
v_clipped = b_values[mb_inds] + torch.clamp(
|
| 508 |
+
newvalue - b_values[mb_inds],
|
| 509 |
+
-args.clip_coef,
|
| 510 |
+
args.clip_coef,
|
| 511 |
+
)
|
| 512 |
+
v_loss_clipped = (v_clipped - b_returns[mb_inds]) ** 2
|
| 513 |
+
v_loss_max = torch.max(v_loss_unclipped, v_loss_clipped)
|
| 514 |
+
v_loss = 0.5 * v_loss_max.mean()
|
| 515 |
+
else:
|
| 516 |
+
v_loss = 0.5 * ((newvalue - b_returns[mb_inds]) ** 2).mean()
|
| 517 |
+
|
| 518 |
+
entropy_loss = entropy.mean()
|
| 519 |
+
loss = pg_loss - args.ent_coef * entropy_loss + v_loss * args.vf_coef
|
| 520 |
+
|
| 521 |
+
optimizer.zero_grad()
|
| 522 |
+
loss.backward()
|
| 523 |
+
nn.utils.clip_grad_norm_(agent.parameters(), args.max_grad_norm)
|
| 524 |
+
optimizer.step()
|
| 525 |
+
|
| 526 |
+
if args.target_kl is not None:
|
| 527 |
+
if approx_kl > args.target_kl:
|
| 528 |
+
break
|
| 529 |
+
|
| 530 |
+
y_pred, y_true = b_values.cpu().numpy(), b_returns.cpu().numpy()
|
| 531 |
+
var_y = np.var(y_true)
|
| 532 |
+
explained_var = np.nan if var_y == 0 else 1 - np.var(y_true - y_pred) / var_y
|
| 533 |
+
|
| 534 |
+
# TRY NOT TO MODIFY: record rewards for plotting purposes
|
| 535 |
+
writer.add_scalar("charts/learning_rate", optimizer.param_groups[0]["lr"], global_step)
|
| 536 |
+
writer.add_scalar("losses/value_loss", v_loss.item(), global_step)
|
| 537 |
+
writer.add_scalar("losses/policy_loss", pg_loss.item(), global_step)
|
| 538 |
+
writer.add_scalar("losses/entropy", entropy_loss.item(), global_step)
|
| 539 |
+
writer.add_scalar("losses/old_approx_kl", old_approx_kl.item(), global_step)
|
| 540 |
+
writer.add_scalar("losses/approx_kl", approx_kl.item(), global_step)
|
| 541 |
+
writer.add_scalar("losses/clipfrac", np.mean(clipfracs), global_step)
|
| 542 |
+
writer.add_scalar("losses/explained_variance", explained_var, global_step)
|
| 543 |
+
print("SPS:", int(global_step / (time.time() - start_time)))
|
| 544 |
+
writer.add_scalar("charts/SPS", int(global_step / (time.time() - start_time)), global_step)
|
| 545 |
+
|
| 546 |
+
if args.save_model:
|
| 547 |
+
agent.obs_rms = copy.deepcopy(get_rms(envs.envs[0])[0])
|
| 548 |
+
model_path = f"runs/{run_name}/{args.exp_name}.cleanrl_model"
|
| 549 |
+
torch.save(agent.state_dict(), model_path)
|
| 550 |
+
print(f"model saved to {model_path}")
|
| 551 |
+
|
| 552 |
+
episodic_returns = evaluate(
|
| 553 |
+
model_path,
|
| 554 |
+
make_eval_env,
|
| 555 |
+
args.env_id,
|
| 556 |
+
eval_episodes=10,
|
| 557 |
+
run_name=f"{run_name}-eval",
|
| 558 |
+
Model=Agent,
|
| 559 |
+
device=device,
|
| 560 |
+
)
|
| 561 |
+
for idx, episodic_return in enumerate(episodic_returns):
|
| 562 |
+
writer.add_scalar("eval/episodic_return", episodic_return, idx)
|
| 563 |
+
|
| 564 |
+
if args.upload_model:
|
| 565 |
+
from cleanrl_utils.huggingface import push_to_hub
|
| 566 |
+
|
| 567 |
+
repo_name = f"{args.env_id}-{args.exp_name}-seed{args.seed}"
|
| 568 |
+
repo_id = f"{args.hf_entity}/{repo_name}" if args.hf_entity else repo_name
|
| 569 |
+
push_to_hub(args, episodic_returns, repo_id, "PPO", f"runs/{run_name}", f"videos/{run_name}-eval")
|
| 570 |
+
|
| 571 |
+
envs.close()
|
| 572 |
+
writer.close()
|
pyproject.toml
ADDED
|
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[tool.poetry]
|
| 2 |
+
name = "cleanrl"
|
| 3 |
+
version = "1.1.0"
|
| 4 |
+
description = "High-quality single file implementation of Deep Reinforcement Learning algorithms with research-friendly features"
|
| 5 |
+
authors = ["Costa Huang <[email protected]>"]
|
| 6 |
+
packages = [
|
| 7 |
+
{ include = "cleanrl" },
|
| 8 |
+
{ include = "cleanrl_utils" },
|
| 9 |
+
]
|
| 10 |
+
keywords = ["reinforcement", "machine", "learning", "research"]
|
| 11 |
+
license="MIT"
|
| 12 |
+
readme = "README.md"
|
| 13 |
+
|
| 14 |
+
[tool.poetry.dependencies]
|
| 15 |
+
python = ">=3.7.1,<3.11"
|
| 16 |
+
tensorboard = "^2.10.0"
|
| 17 |
+
wandb = "^0.13.11"
|
| 18 |
+
gym = "0.23.1"
|
| 19 |
+
torch = ">=1.12.1"
|
| 20 |
+
stable-baselines3 = "1.2.0"
|
| 21 |
+
gymnasium = ">=0.28.1"
|
| 22 |
+
moviepy = "^1.0.3"
|
| 23 |
+
pygame = "2.1.0"
|
| 24 |
+
huggingface-hub = "^0.11.1"
|
| 25 |
+
rich = "<12.0"
|
| 26 |
+
tenacity = "^8.2.2"
|
| 27 |
+
|
| 28 |
+
ale-py = {version = "0.7.4", optional = true}
|
| 29 |
+
AutoROM = {extras = ["accept-rom-license"], version = "^0.4.2", optional = true}
|
| 30 |
+
opencv-python = {version = "^4.6.0.66", optional = true}
|
| 31 |
+
procgen = {version = "^0.10.7", optional = true}
|
| 32 |
+
pytest = {version = "^7.1.3", optional = true}
|
| 33 |
+
mujoco = {version = "<=2.3.3", optional = true}
|
| 34 |
+
imageio = {version = "^2.14.1", optional = true}
|
| 35 |
+
free-mujoco-py = {version = "^2.1.6", optional = true}
|
| 36 |
+
mkdocs-material = {version = "^8.4.3", optional = true}
|
| 37 |
+
markdown-include = {version = "^0.7.0", optional = true}
|
| 38 |
+
openrlbenchmark = {version = "^0.1.1b4", optional = true}
|
| 39 |
+
jax = {version = "^0.3.17", optional = true}
|
| 40 |
+
jaxlib = {version = "^0.3.15", optional = true}
|
| 41 |
+
flax = {version = "^0.6.0", optional = true}
|
| 42 |
+
optuna = {version = "^3.0.1", optional = true}
|
| 43 |
+
optuna-dashboard = {version = "^0.7.2", optional = true}
|
| 44 |
+
envpool = {version = "^0.6.4", optional = true}
|
| 45 |
+
PettingZoo = {version = "1.18.1", optional = true}
|
| 46 |
+
SuperSuit = {version = "3.4.0", optional = true}
|
| 47 |
+
multi-agent-ale-py = {version = "0.1.11", optional = true}
|
| 48 |
+
boto3 = {version = "^1.24.70", optional = true}
|
| 49 |
+
awscli = {version = "^1.25.71", optional = true}
|
| 50 |
+
shimmy = {version = ">=1.0.0", extras = ["dm-control"], optional = true}
|
| 51 |
+
|
| 52 |
+
[tool.poetry.group.dev.dependencies]
|
| 53 |
+
pre-commit = "^2.20.0"
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
[tool.poetry.group.isaacgym]
|
| 57 |
+
optional = true
|
| 58 |
+
[tool.poetry.group.isaacgym.dependencies]
|
| 59 |
+
isaacgymenvs = {git = "https://github.com/vwxyzjn/IsaacGymEnvs.git", rev = "poetry", python = ">=3.7.1,<3.10"}
|
| 60 |
+
isaacgym = {path = "cleanrl/ppo_continuous_action_isaacgym/isaacgym", develop = true}
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
[build-system]
|
| 64 |
+
requires = ["poetry-core"]
|
| 65 |
+
build-backend = "poetry.core.masonry.api"
|
| 66 |
+
|
| 67 |
+
[tool.poetry.extras]
|
| 68 |
+
atari = ["ale-py", "AutoROM", "opencv-python"]
|
| 69 |
+
procgen = ["procgen"]
|
| 70 |
+
plot = ["pandas", "seaborn"]
|
| 71 |
+
pytest = ["pytest"]
|
| 72 |
+
mujoco = ["mujoco", "imageio"]
|
| 73 |
+
mujoco_py = ["free-mujoco-py"]
|
| 74 |
+
jax = ["jax", "jaxlib", "flax"]
|
| 75 |
+
docs = ["mkdocs-material", "markdown-include", "openrlbenchmark"]
|
| 76 |
+
envpool = ["envpool"]
|
| 77 |
+
optuna = ["optuna", "optuna-dashboard"]
|
| 78 |
+
pettingzoo = ["PettingZoo", "SuperSuit", "multi-agent-ale-py"]
|
| 79 |
+
cloud = ["boto3", "awscli"]
|
| 80 |
+
dm_control = ["shimmy", "mujoco"]
|
| 81 |
+
|
| 82 |
+
# dependencies for algorithm variant (useful when you want to run a specific algorithm)
|
| 83 |
+
dqn = []
|
| 84 |
+
dqn_atari = ["ale-py", "AutoROM", "opencv-python"]
|
| 85 |
+
dqn_jax = ["jax", "jaxlib", "flax"]
|
| 86 |
+
dqn_atari_jax = [
|
| 87 |
+
"ale-py", "AutoROM", "opencv-python", # atari
|
| 88 |
+
"jax", "jaxlib", "flax" # jax
|
| 89 |
+
]
|
| 90 |
+
c51 = []
|
| 91 |
+
c51_atari = ["ale-py", "AutoROM", "opencv-python"]
|
| 92 |
+
c51_jax = ["jax", "jaxlib", "flax"]
|
| 93 |
+
c51_atari_jax = [
|
| 94 |
+
"ale-py", "AutoROM", "opencv-python", # atari
|
| 95 |
+
"jax", "jaxlib", "flax" # jax
|
| 96 |
+
]
|
| 97 |
+
ppo_atari_envpool_xla_jax_scan = [
|
| 98 |
+
"ale-py", "AutoROM", "opencv-python", # atari
|
| 99 |
+
"jax", "jaxlib", "flax", # jax
|
| 100 |
+
"envpool", # envpool
|
| 101 |
+
]
|
| 102 |
+
qdagger_dqn_atari_impalacnn = [
|
| 103 |
+
"ale-py", "AutoROM", "opencv-python"
|
| 104 |
+
]
|
| 105 |
+
qdagger_dqn_atari_jax_impalacnn = [
|
| 106 |
+
"ale-py", "AutoROM", "opencv-python", # atari
|
| 107 |
+
"jax", "jaxlib", "flax", # jax
|
| 108 |
+
]
|
replay.mp4
ADDED
|
Binary file (849 kB). View file
|
|
|
videos/Swimmer-v4__ppo_fix_continuous_action__1__1700813947-eval/rl-video-episode-0.mp4
ADDED
|
Binary file (847 kB). View file
|
|
|
videos/Swimmer-v4__ppo_fix_continuous_action__1__1700813947-eval/rl-video-episode-1.mp4
ADDED
|
Binary file (853 kB). View file
|
|
|
videos/Swimmer-v4__ppo_fix_continuous_action__1__1700813947-eval/rl-video-episode-8.mp4
ADDED
|
Binary file (849 kB). View file
|
|
|