update model
Browse files- config.json +0 -31
- configuration_chatglm.py +0 -103
- generation_config.json +0 -7
- modeling_chatglm.py +0 -1435
- pytorch_model-00001-of-00002.bin +0 -3
- pytorch_model.bin.index.json +0 -375
- quantization.py +0 -201
- rng_state_0.pth +0 -3
- rng_state_1.pth +0 -3
- rng_state_2.pth +0 -3
- rng_state_3.pth +0 -3
- rng_state_4.pth +0 -3
- rng_state_5.pth +0 -3
- rng_state_6.pth +0 -3
- rng_state_7.pth +0 -3
- special_tokens_map.json +0 -7
- tokenization_chatglm.py +0 -430
- tokenizer_config.json +0 -22
- zero_to_fp32.py +0 -578
config.json
DELETED
@@ -1,31 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"_name_or_path": "scutcyr/SoulChat",
|
3 |
-
"architectures": [
|
4 |
-
"ChatGLMForConditionalGeneration"
|
5 |
-
],
|
6 |
-
"auto_map": {
|
7 |
-
"AutoConfig": "configuration_chatglm.ChatGLMConfig",
|
8 |
-
"AutoModel": "modeling_chatglm.ChatGLMForConditionalGeneration",
|
9 |
-
"AutoModelForSeq2SeqLM": "modeling_chatglm.ChatGLMForConditionalGeneration"
|
10 |
-
},
|
11 |
-
"bos_token_id": 130004,
|
12 |
-
"eos_token_id": 130005,
|
13 |
-
"gmask_token_id": 130001,
|
14 |
-
"hidden_size": 4096,
|
15 |
-
"inner_hidden_size": 16384,
|
16 |
-
"layernorm_epsilon": 1e-05,
|
17 |
-
"mask_token_id": 130000,
|
18 |
-
"max_sequence_length": 2048,
|
19 |
-
"model_type": "chatglm",
|
20 |
-
"num_attention_heads": 32,
|
21 |
-
"num_layers": 28,
|
22 |
-
"pad_token_id": 3,
|
23 |
-
"position_encoding_2d": true,
|
24 |
-
"pre_seq_len": null,
|
25 |
-
"prefix_projection": false,
|
26 |
-
"quantization_bit": 0,
|
27 |
-
"torch_dtype": "float16",
|
28 |
-
"transformers_version": "4.28.0",
|
29 |
-
"use_cache": true,
|
30 |
-
"vocab_size": 130528
|
31 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
configuration_chatglm.py
DELETED
@@ -1,103 +0,0 @@
|
|
1 |
-
""" ChatGLM model configuration """
|
2 |
-
|
3 |
-
from transformers.configuration_utils import PretrainedConfig
|
4 |
-
from transformers.utils import logging
|
5 |
-
|
6 |
-
logger = logging.get_logger(__name__)
|
7 |
-
|
8 |
-
|
9 |
-
class ChatGLMConfig(PretrainedConfig):
|
10 |
-
r"""
|
11 |
-
This is the configuration class to store the configuration of a [`~ChatGLMModel`].
|
12 |
-
It is used to instantiate an ChatGLM model according to the specified arguments, defining the model
|
13 |
-
architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of
|
14 |
-
the ChatGLM-6B [THUDM/ChatGLM-6B](https://huggingface.co/THUDM/chatglm-6b) architecture.
|
15 |
-
|
16 |
-
Configuration objects inherit from [`PretrainedConfig`] and can be used
|
17 |
-
to control the model outputs. Read the documentation from [`PretrainedConfig`]
|
18 |
-
for more information.
|
19 |
-
|
20 |
-
|
21 |
-
Args:
|
22 |
-
vocab_size (`int`, *optional*, defaults to 150528):
|
23 |
-
Vocabulary size of the ChatGLM-6B model. Defines the number of different tokens that can be represented by the
|
24 |
-
`inputs_ids` passed when calling [`~ChatGLMModel`] or
|
25 |
-
[`~TFChatGLMModel`].
|
26 |
-
hidden_size (`int`, *optional*, defaults to 4096):
|
27 |
-
Dimension of the encoder layers and the pooler layer.
|
28 |
-
num_hidden_layers (`int`, *optional*, defaults to 28):
|
29 |
-
Number of hidden layers in the Transformer encoder.
|
30 |
-
num_attention_heads (`int`, *optional*, defaults to 32):
|
31 |
-
Number of attention heads for each attention layer in the Transformer encoder.
|
32 |
-
inner_hidden_size (`int`, *optional*, defaults to 16384):
|
33 |
-
Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
34 |
-
max_sequence_length (`int`, *optional*, defaults to 512):
|
35 |
-
The maximum sequence length that this model might ever be used with.
|
36 |
-
Typically set this to something large just in case (e.g., 512 or 1024 or 2048).
|
37 |
-
layernorm_epsilon (`float`, *optional*, defaults to 1e-5):
|
38 |
-
The epsilon used by the layer normalization layers.
|
39 |
-
use_cache (`bool`, *optional*, defaults to `True`):
|
40 |
-
Whether the model should return the last key/values attentions (not used by all models).
|
41 |
-
Example:
|
42 |
-
|
43 |
-
```python
|
44 |
-
>>> from configuration_chatglm import ChatGLMConfig
|
45 |
-
>>> from modeling_chatglm import ChatGLMModel
|
46 |
-
|
47 |
-
>>> # Initializing a ChatGLM-6B THUDM/ChatGLM-6B style configuration
|
48 |
-
>>> configuration = ChatGLMConfig()
|
49 |
-
|
50 |
-
>>> # Initializing a model from the THUDM/ChatGLM-6B style configuration
|
51 |
-
>>> model = ChatGLMModel(configuration)
|
52 |
-
|
53 |
-
>>> # Accessing the model configuration
|
54 |
-
>>> configuration = model.config
|
55 |
-
```
|
56 |
-
"""
|
57 |
-
model_type = "chatglm"
|
58 |
-
|
59 |
-
def __init__(
|
60 |
-
self,
|
61 |
-
vocab_size=150528,
|
62 |
-
hidden_size=4096,
|
63 |
-
num_layers=28,
|
64 |
-
num_attention_heads=32,
|
65 |
-
layernorm_epsilon=1e-5,
|
66 |
-
use_cache=False,
|
67 |
-
bos_token_id=150004,
|
68 |
-
eos_token_id=150005,
|
69 |
-
mask_token_id=150000,
|
70 |
-
gmask_token_id=150001,
|
71 |
-
pad_token_id=0,
|
72 |
-
max_sequence_length=2048,
|
73 |
-
inner_hidden_size=16384,
|
74 |
-
position_encoding_2d=True,
|
75 |
-
quantization_bit=0,
|
76 |
-
pre_seq_len=None,
|
77 |
-
prefix_projection=False,
|
78 |
-
**kwargs
|
79 |
-
):
|
80 |
-
self.num_layers = num_layers
|
81 |
-
self.vocab_size = vocab_size
|
82 |
-
self.hidden_size = hidden_size
|
83 |
-
self.num_attention_heads = num_attention_heads
|
84 |
-
self.max_sequence_length = max_sequence_length
|
85 |
-
self.layernorm_epsilon = layernorm_epsilon
|
86 |
-
self.inner_hidden_size = inner_hidden_size
|
87 |
-
self.use_cache = use_cache
|
88 |
-
self.bos_token_id = bos_token_id
|
89 |
-
self.eos_token_id = eos_token_id
|
90 |
-
self.pad_token_id = pad_token_id
|
91 |
-
self.mask_token_id = mask_token_id
|
92 |
-
self.gmask_token_id = gmask_token_id
|
93 |
-
self.position_encoding_2d = position_encoding_2d
|
94 |
-
self.quantization_bit = quantization_bit
|
95 |
-
self.pre_seq_len = pre_seq_len
|
96 |
-
self.prefix_projection = prefix_projection
|
97 |
-
|
98 |
-
super().__init__(
|
99 |
-
pad_token_id=pad_token_id,
|
100 |
-
bos_token_id=bos_token_id,
|
101 |
-
eos_token_id=eos_token_id,
|
102 |
-
**kwargs
|
103 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
generation_config.json
DELETED
@@ -1,7 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"_from_model_config": true,
|
3 |
-
"bos_token_id": 130004,
|
4 |
-
"eos_token_id": 130005,
|
5 |
-
"pad_token_id": 3,
|
6 |
-
"transformers_version": "4.28.0"
|
7 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
modeling_chatglm.py
DELETED
@@ -1,1435 +0,0 @@
|
|
1 |
-
""" PyTorch ChatGLM model. """
|
2 |
-
|
3 |
-
import math
|
4 |
-
import copy
|
5 |
-
import os
|
6 |
-
import warnings
|
7 |
-
import re
|
8 |
-
import sys
|
9 |
-
|
10 |
-
import torch
|
11 |
-
import torch.utils.checkpoint
|
12 |
-
import torch.nn.functional as F
|
13 |
-
from torch import nn
|
14 |
-
from torch.nn import CrossEntropyLoss, LayerNorm
|
15 |
-
from torch.nn.utils import skip_init
|
16 |
-
from typing import Optional, Tuple, Union, List, Callable, Dict, Any
|
17 |
-
|
18 |
-
from transformers.utils import (
|
19 |
-
add_code_sample_docstrings,
|
20 |
-
add_start_docstrings,
|
21 |
-
add_start_docstrings_to_model_forward,
|
22 |
-
)
|
23 |
-
from transformers.modeling_outputs import (
|
24 |
-
BaseModelOutputWithPast,
|
25 |
-
CausalLMOutputWithPast,
|
26 |
-
BaseModelOutputWithPastAndCrossAttentions,
|
27 |
-
)
|
28 |
-
from transformers.modeling_utils import PreTrainedModel
|
29 |
-
from transformers.utils import logging
|
30 |
-
from transformers.generation.logits_process import LogitsProcessor
|
31 |
-
from transformers.generation.utils import LogitsProcessorList, StoppingCriteriaList, GenerationConfig, ModelOutput
|
32 |
-
|
33 |
-
from .configuration_chatglm import ChatGLMConfig
|
34 |
-
|
35 |
-
# flags required to enable jit fusion kernels
|
36 |
-
|
37 |
-
if sys.platform != 'darwin':
|
38 |
-
torch._C._jit_set_profiling_mode(False)
|
39 |
-
torch._C._jit_set_profiling_executor(False)
|
40 |
-
torch._C._jit_override_can_fuse_on_cpu(True)
|
41 |
-
torch._C._jit_override_can_fuse_on_gpu(True)
|
42 |
-
|
43 |
-
logger = logging.get_logger(__name__)
|
44 |
-
|
45 |
-
_CHECKPOINT_FOR_DOC = "THUDM/ChatGLM-6B"
|
46 |
-
_CONFIG_FOR_DOC = "ChatGLM6BConfig"
|
47 |
-
|
48 |
-
CHATGLM_6B_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
49 |
-
"THUDM/chatglm-6b",
|
50 |
-
# See all ChatGLM-6B models at https://huggingface.co/models?filter=chatglm
|
51 |
-
]
|
52 |
-
|
53 |
-
|
54 |
-
class InvalidScoreLogitsProcessor(LogitsProcessor):
|
55 |
-
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
|
56 |
-
if torch.isnan(scores).any() or torch.isinf(scores).any():
|
57 |
-
scores.zero_()
|
58 |
-
scores[..., 5] = 5e4
|
59 |
-
return scores
|
60 |
-
|
61 |
-
|
62 |
-
def load_tf_weights_in_chatglm_6b(model, config, tf_checkpoint_path):
|
63 |
-
"""Load tf checkpoints in a pytorch model."""
|
64 |
-
try:
|
65 |
-
import re
|
66 |
-
|
67 |
-
import numpy as np
|
68 |
-
import tensorflow as tf
|
69 |
-
except ImportError:
|
70 |
-
logger.error(
|
71 |
-
"Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
|
72 |
-
"https://www.tensorflow.org/install/ for installation instructions."
|
73 |
-
)
|
74 |
-
raise
|
75 |
-
tf_path = os.path.abspath(tf_checkpoint_path)
|
76 |
-
logger.info(f"Converting TensorFlow checkpoint from {tf_path}")
|
77 |
-
# Load weights from TF model
|
78 |
-
init_vars = tf.train.list_variables(tf_path)
|
79 |
-
names = []
|
80 |
-
arrays = []
|
81 |
-
for name, shape in init_vars:
|
82 |
-
logger.info(f"Loading TF weight {name} with shape {shape}")
|
83 |
-
array = tf.train.load_variable(tf_path, name)
|
84 |
-
names.append(name)
|
85 |
-
arrays.append(array)
|
86 |
-
|
87 |
-
for name, array in zip(names, arrays):
|
88 |
-
name = name.split("/")
|
89 |
-
# adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
|
90 |
-
# which are not required for using pretrained model
|
91 |
-
if any(
|
92 |
-
n in ["adam_v", "adam_m", "AdamWeightDecayOptimizer", "AdamWeightDecayOptimizer_1", "global_step"]
|
93 |
-
for n in name
|
94 |
-
):
|
95 |
-
logger.info(f"Skipping {'/'.join(name)}")
|
96 |
-
continue
|
97 |
-
pointer = model
|
98 |
-
for m_name in name:
|
99 |
-
if re.fullmatch(r"[A-Za-z]+_\d+", m_name):
|
100 |
-
scope_names = re.split(r"_(\d+)", m_name)
|
101 |
-
else:
|
102 |
-
scope_names = [m_name]
|
103 |
-
if scope_names[0] == "kernel" or scope_names[0] == "gamma":
|
104 |
-
pointer = getattr(pointer, "weight")
|
105 |
-
elif scope_names[0] == "output_bias" or scope_names[0] == "beta":
|
106 |
-
pointer = getattr(pointer, "bias")
|
107 |
-
elif scope_names[0] == "output_weights":
|
108 |
-
pointer = getattr(pointer, "weight")
|
109 |
-
elif scope_names[0] == "squad":
|
110 |
-
pointer = getattr(pointer, "classifier")
|
111 |
-
else:
|
112 |
-
try:
|
113 |
-
pointer = getattr(pointer, scope_names[0])
|
114 |
-
except AttributeError:
|
115 |
-
logger.info(f"Skipping {'/'.join(name)}")
|
116 |
-
continue
|
117 |
-
if len(scope_names) >= 2:
|
118 |
-
num = int(scope_names[1])
|
119 |
-
pointer = pointer[num]
|
120 |
-
if m_name[-11:] == "_embeddings":
|
121 |
-
pointer = getattr(pointer, "weight")
|
122 |
-
elif m_name == "kernel":
|
123 |
-
array = np.transpose(array)
|
124 |
-
try:
|
125 |
-
assert (
|
126 |
-
pointer.shape == array.shape
|
127 |
-
), f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched"
|
128 |
-
except AssertionError as e:
|
129 |
-
e.args += (pointer.shape, array.shape)
|
130 |
-
raise
|
131 |
-
logger.info(f"Initialize PyTorch weight {name}")
|
132 |
-
pointer.data = torch.from_numpy(array)
|
133 |
-
return model
|
134 |
-
|
135 |
-
|
136 |
-
class PrefixEncoder(torch.nn.Module):
|
137 |
-
"""
|
138 |
-
The torch.nn model to encode the prefix
|
139 |
-
Input shape: (batch-size, prefix-length)
|
140 |
-
Output shape: (batch-size, prefix-length, 2*layers*hidden)
|
141 |
-
"""
|
142 |
-
|
143 |
-
def __init__(self, config):
|
144 |
-
super().__init__()
|
145 |
-
self.prefix_projection = config.prefix_projection
|
146 |
-
if self.prefix_projection:
|
147 |
-
# Use a two-layer MLP to encode the prefix
|
148 |
-
self.embedding = torch.nn.Embedding(config.pre_seq_len, config.hidden_size)
|
149 |
-
self.trans = torch.nn.Sequential(
|
150 |
-
torch.nn.Linear(config.hidden_size, config.hidden_size),
|
151 |
-
torch.nn.Tanh(),
|
152 |
-
torch.nn.Linear(config.hidden_size, config.num_layers * config.hidden_size * 2)
|
153 |
-
)
|
154 |
-
else:
|
155 |
-
self.embedding = torch.nn.Embedding(config.pre_seq_len, config.num_layers * config.hidden_size * 2)
|
156 |
-
|
157 |
-
def forward(self, prefix: torch.Tensor):
|
158 |
-
if self.prefix_projection:
|
159 |
-
prefix_tokens = self.embedding(prefix)
|
160 |
-
past_key_values = self.trans(prefix_tokens)
|
161 |
-
else:
|
162 |
-
past_key_values = self.embedding(prefix)
|
163 |
-
return past_key_values
|
164 |
-
|
165 |
-
|
166 |
-
@torch.jit.script
|
167 |
-
def gelu_impl(x):
|
168 |
-
"""OpenAI's gelu implementation."""
|
169 |
-
return 0.5 * x * (1.0 + torch.tanh(0.7978845608028654 * x *
|
170 |
-
(1.0 + 0.044715 * x * x)))
|
171 |
-
|
172 |
-
|
173 |
-
def gelu(x):
|
174 |
-
return gelu_impl(x)
|
175 |
-
|
176 |
-
|
177 |
-
class RotaryEmbedding(torch.nn.Module):
|
178 |
-
def __init__(self, dim, base=10000, precision=torch.half, learnable=False):
|
179 |
-
super().__init__()
|
180 |
-
inv_freq = 1. / (base ** (torch.arange(0, dim, 2).float() / dim))
|
181 |
-
inv_freq = inv_freq.half()
|
182 |
-
self.learnable = learnable
|
183 |
-
if learnable:
|
184 |
-
self.inv_freq = torch.nn.Parameter(inv_freq)
|
185 |
-
self.max_seq_len_cached = None
|
186 |
-
else:
|
187 |
-
self.register_buffer('inv_freq', inv_freq)
|
188 |
-
self.max_seq_len_cached = None
|
189 |
-
self.cos_cached = None
|
190 |
-
self.sin_cached = None
|
191 |
-
self.precision = precision
|
192 |
-
|
193 |
-
def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys,
|
194 |
-
error_msgs):
|
195 |
-
pass
|
196 |
-
|
197 |
-
def forward(self, x, seq_dim=1, seq_len=None):
|
198 |
-
if seq_len is None:
|
199 |
-
seq_len = x.shape[seq_dim]
|
200 |
-
if self.max_seq_len_cached is None or (seq_len > self.max_seq_len_cached):
|
201 |
-
self.max_seq_len_cached = None if self.learnable else seq_len
|
202 |
-
t = torch.arange(seq_len, device=x.device, dtype=self.inv_freq.dtype)
|
203 |
-
freqs = torch.einsum('i,j->ij', t, self.inv_freq)
|
204 |
-
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
205 |
-
emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
|
206 |
-
if self.precision == torch.bfloat16:
|
207 |
-
emb = emb.float()
|
208 |
-
|
209 |
-
# [sx, 1 (b * np), hn]
|
210 |
-
cos_cached = emb.cos()[:, None, :]
|
211 |
-
sin_cached = emb.sin()[:, None, :]
|
212 |
-
if self.precision == torch.bfloat16:
|
213 |
-
cos_cached = cos_cached.bfloat16()
|
214 |
-
sin_cached = sin_cached.bfloat16()
|
215 |
-
if self.learnable:
|
216 |
-
return cos_cached, sin_cached
|
217 |
-
self.cos_cached, self.sin_cached = cos_cached, sin_cached
|
218 |
-
return self.cos_cached[:seq_len, ...], self.sin_cached[:seq_len, ...]
|
219 |
-
|
220 |
-
def _apply(self, fn):
|
221 |
-
if self.cos_cached is not None:
|
222 |
-
self.cos_cached = fn(self.cos_cached)
|
223 |
-
if self.sin_cached is not None:
|
224 |
-
self.sin_cached = fn(self.sin_cached)
|
225 |
-
return super()._apply(fn)
|
226 |
-
|
227 |
-
|
228 |
-
def rotate_half(x):
|
229 |
-
x1, x2 = x[..., :x.shape[-1] // 2], x[..., x.shape[-1] // 2:]
|
230 |
-
return torch.cat((-x2, x1), dim=x1.ndim - 1) # dim=-1 triggers a bug in earlier torch versions
|
231 |
-
|
232 |
-
|
233 |
-
@torch.jit.script
|
234 |
-
def apply_rotary_pos_emb_index(q, k, cos, sin, position_id):
|
235 |
-
# position_id: [sq, b], q, k: [sq, b, np, hn], cos: [sq, 1, hn] -> [sq, b, 1, hn]
|
236 |
-
cos, sin = F.embedding(position_id, cos.squeeze(1)).unsqueeze(2), \
|
237 |
-
F.embedding(position_id, sin.squeeze(1)).unsqueeze(2)
|
238 |
-
q, k = (q * cos) + (rotate_half(q) * sin), (k * cos) + (rotate_half(k) * sin)
|
239 |
-
return q, k
|
240 |
-
|
241 |
-
|
242 |
-
def attention_fn(
|
243 |
-
self,
|
244 |
-
query_layer,
|
245 |
-
key_layer,
|
246 |
-
value_layer,
|
247 |
-
attention_mask,
|
248 |
-
hidden_size_per_partition,
|
249 |
-
layer_id,
|
250 |
-
layer_past=None,
|
251 |
-
scaling_attention_score=True,
|
252 |
-
use_cache=False,
|
253 |
-
):
|
254 |
-
if layer_past is not None:
|
255 |
-
past_key, past_value = layer_past[0], layer_past[1]
|
256 |
-
key_layer = torch.cat((past_key, key_layer), dim=0)
|
257 |
-
value_layer = torch.cat((past_value, value_layer), dim=0)
|
258 |
-
|
259 |
-
# seqlen, batch, num_attention_heads, hidden_size_per_attention_head
|
260 |
-
seq_len, b, nh, hidden_size = key_layer.shape
|
261 |
-
|
262 |
-
if use_cache:
|
263 |
-
present = (key_layer, value_layer)
|
264 |
-
else:
|
265 |
-
present = None
|
266 |
-
|
267 |
-
query_key_layer_scaling_coeff = float(layer_id + 1)
|
268 |
-
if scaling_attention_score:
|
269 |
-
query_layer = query_layer / (math.sqrt(hidden_size) * query_key_layer_scaling_coeff)
|
270 |
-
|
271 |
-
# ===================================
|
272 |
-
# Raw attention scores. [b, np, s, s]
|
273 |
-
# ===================================
|
274 |
-
|
275 |
-
# [b, np, sq, sk]
|
276 |
-
output_size = (query_layer.size(1), query_layer.size(2), query_layer.size(0), key_layer.size(0))
|
277 |
-
|
278 |
-
# [sq, b, np, hn] -> [sq, b * np, hn]
|
279 |
-
query_layer = query_layer.view(output_size[2], output_size[0] * output_size[1], -1)
|
280 |
-
# [sk, b, np, hn] -> [sk, b * np, hn]
|
281 |
-
key_layer = key_layer.view(output_size[3], output_size[0] * output_size[1], -1)
|
282 |
-
|
283 |
-
matmul_result = torch.zeros(
|
284 |
-
1, 1, 1,
|
285 |
-
dtype=query_layer.dtype,
|
286 |
-
device=query_layer.device,
|
287 |
-
)
|
288 |
-
|
289 |
-
matmul_result = torch.baddbmm(
|
290 |
-
matmul_result,
|
291 |
-
query_layer.transpose(0, 1), # [b * np, sq, hn]
|
292 |
-
key_layer.transpose(0, 1).transpose(1, 2), # [b * np, hn, sk]
|
293 |
-
beta=0.0,
|
294 |
-
alpha=1.0,
|
295 |
-
)
|
296 |
-
|
297 |
-
# change view to [b, np, sq, sk]
|
298 |
-
attention_scores = matmul_result.view(*output_size)
|
299 |
-
|
300 |
-
if self.scale_mask_softmax:
|
301 |
-
self.scale_mask_softmax.scale = query_key_layer_scaling_coeff
|
302 |
-
attention_probs = self.scale_mask_softmax(attention_scores, attention_mask.contiguous())
|
303 |
-
else:
|
304 |
-
if not (attention_mask == 0).all():
|
305 |
-
# if auto-regressive, skip
|
306 |
-
attention_scores.masked_fill_(attention_mask, -10000.0)
|
307 |
-
dtype = attention_scores.dtype
|
308 |
-
attention_scores = attention_scores.float()
|
309 |
-
attention_scores = attention_scores * query_key_layer_scaling_coeff
|
310 |
-
|
311 |
-
attention_probs = F.softmax(attention_scores, dim=-1)
|
312 |
-
|
313 |
-
attention_probs = attention_probs.type(dtype)
|
314 |
-
|
315 |
-
# =========================
|
316 |
-
# Context layer. [sq, b, hp]
|
317 |
-
# =========================
|
318 |
-
|
319 |
-
# value_layer -> context layer.
|
320 |
-
# [sk, b, np, hn] --> [b, np, sq, hn]
|
321 |
-
|
322 |
-
# context layer shape: [b, np, sq, hn]
|
323 |
-
output_size = (value_layer.size(1), value_layer.size(2), query_layer.size(0), value_layer.size(3))
|
324 |
-
|
325 |
-
# change view [sk, b * np, hn]
|
326 |
-
value_layer = value_layer.view(value_layer.size(0), output_size[0] * output_size[1], -1)
|
327 |
-
|
328 |
-
# change view [b * np, sq, sk]
|
329 |
-
attention_probs = attention_probs.view(output_size[0] * output_size[1], output_size[2], -1)
|
330 |
-
|
331 |
-
# matmul: [b * np, sq, hn]
|
332 |
-
context_layer = torch.bmm(attention_probs, value_layer.transpose(0, 1))
|
333 |
-
|
334 |
-
# change view [b, np, sq, hn]
|
335 |
-
context_layer = context_layer.view(*output_size)
|
336 |
-
|
337 |
-
# [b, np, sq, hn] --> [sq, b, np, hn]
|
338 |
-
context_layer = context_layer.permute(2, 0, 1, 3).contiguous()
|
339 |
-
|
340 |
-
# [sq, b, np, hn] --> [sq, b, hp]
|
341 |
-
new_context_layer_shape = context_layer.size()[:-2] + (hidden_size_per_partition,)
|
342 |
-
context_layer = context_layer.view(*new_context_layer_shape)
|
343 |
-
|
344 |
-
outputs = (context_layer, present, attention_probs)
|
345 |
-
|
346 |
-
return outputs
|
347 |
-
|
348 |
-
|
349 |
-
def default_init(cls, *args, **kwargs):
|
350 |
-
return cls(*args, **kwargs)
|
351 |
-
|
352 |
-
|
353 |
-
class SelfAttention(torch.nn.Module):
|
354 |
-
def __init__(self, hidden_size, num_attention_heads,
|
355 |
-
layer_id, hidden_size_per_attention_head=None, bias=True,
|
356 |
-
params_dtype=torch.float, position_encoding_2d=True, empty_init=True):
|
357 |
-
if empty_init:
|
358 |
-
init_method = skip_init
|
359 |
-
else:
|
360 |
-
init_method = default_init
|
361 |
-
super(SelfAttention, self).__init__()
|
362 |
-
|
363 |
-
self.layer_id = layer_id
|
364 |
-
self.hidden_size = hidden_size
|
365 |
-
self.hidden_size_per_partition = hidden_size
|
366 |
-
self.num_attention_heads = num_attention_heads
|
367 |
-
self.num_attention_heads_per_partition = num_attention_heads
|
368 |
-
self.position_encoding_2d = position_encoding_2d
|
369 |
-
self.rotary_emb = RotaryEmbedding(
|
370 |
-
self.hidden_size // (self.num_attention_heads * 2)
|
371 |
-
if position_encoding_2d
|
372 |
-
else self.hidden_size // self.num_attention_heads,
|
373 |
-
base=10000,
|
374 |
-
precision=torch.half,
|
375 |
-
learnable=False,
|
376 |
-
)
|
377 |
-
|
378 |
-
self.scale_mask_softmax = None
|
379 |
-
|
380 |
-
if hidden_size_per_attention_head is None:
|
381 |
-
self.hidden_size_per_attention_head = hidden_size // num_attention_heads
|
382 |
-
else:
|
383 |
-
self.hidden_size_per_attention_head = hidden_size_per_attention_head
|
384 |
-
|
385 |
-
self.inner_hidden_size = num_attention_heads * self.hidden_size_per_attention_head
|
386 |
-
|
387 |
-
# Strided linear layer.
|
388 |
-
self.query_key_value = init_method(
|
389 |
-
torch.nn.Linear,
|
390 |
-
hidden_size,
|
391 |
-
3 * self.inner_hidden_size,
|
392 |
-
bias=bias,
|
393 |
-
dtype=params_dtype,
|
394 |
-
)
|
395 |
-
|
396 |
-
self.dense = init_method(
|
397 |
-
torch.nn.Linear,
|
398 |
-
self.inner_hidden_size,
|
399 |
-
hidden_size,
|
400 |
-
bias=bias,
|
401 |
-
dtype=params_dtype,
|
402 |
-
)
|
403 |
-
|
404 |
-
@staticmethod
|
405 |
-
def attention_mask_func(attention_scores, attention_mask):
|
406 |
-
attention_scores.masked_fill_(attention_mask, -10000.0)
|
407 |
-
return attention_scores
|
408 |
-
|
409 |
-
def split_tensor_along_last_dim(self, tensor, num_partitions,
|
410 |
-
contiguous_split_chunks=False):
|
411 |
-
"""Split a tensor along its last dimension.
|
412 |
-
Arguments:
|
413 |
-
tensor: input tensor.
|
414 |
-
num_partitions: number of partitions to split the tensor
|
415 |
-
contiguous_split_chunks: If True, make each chunk contiguous
|
416 |
-
in memory.
|
417 |
-
"""
|
418 |
-
# Get the size and dimension.
|
419 |
-
last_dim = tensor.dim() - 1
|
420 |
-
last_dim_size = tensor.size()[last_dim] // num_partitions
|
421 |
-
# Split.
|
422 |
-
tensor_list = torch.split(tensor, last_dim_size, dim=last_dim)
|
423 |
-
# Note: torch.split does not create contiguous tensors by default.
|
424 |
-
if contiguous_split_chunks:
|
425 |
-
return tuple(chunk.contiguous() for chunk in tensor_list)
|
426 |
-
|
427 |
-
return tensor_list
|
428 |
-
|
429 |
-
def forward(
|
430 |
-
self,
|
431 |
-
hidden_states: torch.Tensor,
|
432 |
-
position_ids,
|
433 |
-
attention_mask: torch.Tensor,
|
434 |
-
layer_id,
|
435 |
-
layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
436 |
-
use_cache: bool = False,
|
437 |
-
output_attentions: bool = False,
|
438 |
-
):
|
439 |
-
"""
|
440 |
-
hidden_states: [seq_len, batch, hidden_size]
|
441 |
-
attention_mask: [(1, 1), seq_len, seq_len]
|
442 |
-
"""
|
443 |
-
|
444 |
-
# [seq_len, batch, 3 * hidden_size]
|
445 |
-
mixed_raw_layer = self.query_key_value(hidden_states)
|
446 |
-
|
447 |
-
# [seq_len, batch, 3 * hidden_size] --> [seq_len, batch, num_attention_heads, 3 * hidden_size_per_attention_head]
|
448 |
-
new_tensor_shape = mixed_raw_layer.size()[:-1] + (
|
449 |
-
self.num_attention_heads_per_partition,
|
450 |
-
3 * self.hidden_size_per_attention_head,
|
451 |
-
)
|
452 |
-
mixed_raw_layer = mixed_raw_layer.view(*new_tensor_shape)
|
453 |
-
|
454 |
-
# [seq_len, batch, num_attention_heads, hidden_size_per_attention_head]
|
455 |
-
(query_layer, key_layer, value_layer) = self.split_tensor_along_last_dim(mixed_raw_layer, 3)
|
456 |
-
|
457 |
-
if self.position_encoding_2d:
|
458 |
-
q1, q2 = query_layer.chunk(2, dim=(query_layer.ndim - 1))
|
459 |
-
k1, k2 = key_layer.chunk(2, dim=(key_layer.ndim - 1))
|
460 |
-
cos, sin = self.rotary_emb(q1, seq_len=position_ids.max() + 1)
|
461 |
-
position_ids, block_position_ids = position_ids[:, 0, :].transpose(0, 1).contiguous(), \
|
462 |
-
position_ids[:, 1, :].transpose(0, 1).contiguous()
|
463 |
-
q1, k1 = apply_rotary_pos_emb_index(q1, k1, cos, sin, position_ids)
|
464 |
-
q2, k2 = apply_rotary_pos_emb_index(q2, k2, cos, sin, block_position_ids)
|
465 |
-
query_layer = torch.concat([q1, q2], dim=(q1.ndim - 1))
|
466 |
-
key_layer = torch.concat([k1, k2], dim=(k1.ndim - 1))
|
467 |
-
else:
|
468 |
-
position_ids = position_ids.transpose(0, 1)
|
469 |
-
cos, sin = self.rotary_emb(value_layer, seq_len=position_ids.max() + 1)
|
470 |
-
# [seq_len, batch, num_attention_heads, hidden_size_per_attention_head]
|
471 |
-
query_layer, key_layer = apply_rotary_pos_emb_index(query_layer, key_layer, cos, sin, position_ids)
|
472 |
-
|
473 |
-
# [seq_len, batch, hidden_size]
|
474 |
-
context_layer, present, attention_probs = attention_fn(
|
475 |
-
self=self,
|
476 |
-
query_layer=query_layer,
|
477 |
-
key_layer=key_layer,
|
478 |
-
value_layer=value_layer,
|
479 |
-
attention_mask=attention_mask,
|
480 |
-
hidden_size_per_partition=self.hidden_size_per_partition,
|
481 |
-
layer_id=layer_id,
|
482 |
-
layer_past=layer_past,
|
483 |
-
use_cache=use_cache
|
484 |
-
)
|
485 |
-
|
486 |
-
output = self.dense(context_layer)
|
487 |
-
|
488 |
-
outputs = (output, present)
|
489 |
-
|
490 |
-
if output_attentions:
|
491 |
-
outputs += (attention_probs,)
|
492 |
-
|
493 |
-
return outputs # output, present, attention_probs
|
494 |
-
|
495 |
-
|
496 |
-
class GEGLU(torch.nn.Module):
|
497 |
-
def __init__(self):
|
498 |
-
super().__init__()
|
499 |
-
self.activation_fn = F.gelu
|
500 |
-
|
501 |
-
def forward(self, x):
|
502 |
-
# dim=-1 breaks in jit for pt<1.10
|
503 |
-
x1, x2 = x.chunk(2, dim=(x.ndim - 1))
|
504 |
-
return x1 * self.activation_fn(x2)
|
505 |
-
|
506 |
-
|
507 |
-
class GLU(torch.nn.Module):
|
508 |
-
def __init__(self, hidden_size, inner_hidden_size=None,
|
509 |
-
layer_id=None, bias=True, activation_func=gelu, params_dtype=torch.float, empty_init=True):
|
510 |
-
super(GLU, self).__init__()
|
511 |
-
if empty_init:
|
512 |
-
init_method = skip_init
|
513 |
-
else:
|
514 |
-
init_method = default_init
|
515 |
-
self.layer_id = layer_id
|
516 |
-
self.activation_func = activation_func
|
517 |
-
|
518 |
-
# Project to 4h.
|
519 |
-
self.hidden_size = hidden_size
|
520 |
-
if inner_hidden_size is None:
|
521 |
-
inner_hidden_size = 4 * hidden_size
|
522 |
-
self.inner_hidden_size = inner_hidden_size
|
523 |
-
self.dense_h_to_4h = init_method(
|
524 |
-
torch.nn.Linear,
|
525 |
-
self.hidden_size,
|
526 |
-
self.inner_hidden_size,
|
527 |
-
bias=bias,
|
528 |
-
dtype=params_dtype,
|
529 |
-
)
|
530 |
-
# Project back to h.
|
531 |
-
self.dense_4h_to_h = init_method(
|
532 |
-
torch.nn.Linear,
|
533 |
-
self.inner_hidden_size,
|
534 |
-
self.hidden_size,
|
535 |
-
bias=bias,
|
536 |
-
dtype=params_dtype,
|
537 |
-
)
|
538 |
-
|
539 |
-
def forward(self, hidden_states):
|
540 |
-
"""
|
541 |
-
hidden_states: [seq_len, batch, hidden_size]
|
542 |
-
"""
|
543 |
-
|
544 |
-
# [seq_len, batch, inner_hidden_size]
|
545 |
-
intermediate_parallel = self.dense_h_to_4h(hidden_states)
|
546 |
-
|
547 |
-
intermediate_parallel = self.activation_func(intermediate_parallel)
|
548 |
-
|
549 |
-
output = self.dense_4h_to_h(intermediate_parallel)
|
550 |
-
|
551 |
-
return output
|
552 |
-
|
553 |
-
|
554 |
-
class GLMBlock(torch.nn.Module):
|
555 |
-
def __init__(
|
556 |
-
self,
|
557 |
-
hidden_size,
|
558 |
-
num_attention_heads,
|
559 |
-
layernorm_epsilon,
|
560 |
-
layer_id,
|
561 |
-
inner_hidden_size=None,
|
562 |
-
hidden_size_per_attention_head=None,
|
563 |
-
layernorm=LayerNorm,
|
564 |
-
use_bias=True,
|
565 |
-
params_dtype=torch.float,
|
566 |
-
num_layers=28,
|
567 |
-
position_encoding_2d=True,
|
568 |
-
empty_init=True
|
569 |
-
):
|
570 |
-
super(GLMBlock, self).__init__()
|
571 |
-
# Set output layer initialization if not provided.
|
572 |
-
|
573 |
-
self.layer_id = layer_id
|
574 |
-
|
575 |
-
# Layernorm on the input data.
|
576 |
-
self.input_layernorm = layernorm(hidden_size, eps=layernorm_epsilon)
|
577 |
-
|
578 |
-
self.position_encoding_2d = position_encoding_2d
|
579 |
-
|
580 |
-
# Self attention.
|
581 |
-
self.attention = SelfAttention(
|
582 |
-
hidden_size,
|
583 |
-
num_attention_heads,
|
584 |
-
layer_id,
|
585 |
-
hidden_size_per_attention_head=hidden_size_per_attention_head,
|
586 |
-
bias=use_bias,
|
587 |
-
params_dtype=params_dtype,
|
588 |
-
position_encoding_2d=self.position_encoding_2d,
|
589 |
-
empty_init=empty_init
|
590 |
-
)
|
591 |
-
|
592 |
-
# Layernorm on the input data.
|
593 |
-
self.post_attention_layernorm = layernorm(hidden_size, eps=layernorm_epsilon)
|
594 |
-
|
595 |
-
self.num_layers = num_layers
|
596 |
-
|
597 |
-
# GLU
|
598 |
-
self.mlp = GLU(
|
599 |
-
hidden_size,
|
600 |
-
inner_hidden_size=inner_hidden_size,
|
601 |
-
bias=use_bias,
|
602 |
-
layer_id=layer_id,
|
603 |
-
params_dtype=params_dtype,
|
604 |
-
empty_init=empty_init
|
605 |
-
)
|
606 |
-
|
607 |
-
def forward(
|
608 |
-
self,
|
609 |
-
hidden_states: torch.Tensor,
|
610 |
-
position_ids,
|
611 |
-
attention_mask: torch.Tensor,
|
612 |
-
layer_id,
|
613 |
-
layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
614 |
-
use_cache: bool = False,
|
615 |
-
output_attentions: bool = False,
|
616 |
-
):
|
617 |
-
"""
|
618 |
-
hidden_states: [seq_len, batch, hidden_size]
|
619 |
-
attention_mask: [(1, 1), seq_len, seq_len]
|
620 |
-
"""
|
621 |
-
|
622 |
-
# Layer norm at the begining of the transformer layer.
|
623 |
-
# [seq_len, batch, hidden_size]
|
624 |
-
attention_input = self.input_layernorm(hidden_states)
|
625 |
-
|
626 |
-
# Self attention.
|
627 |
-
attention_outputs = self.attention(
|
628 |
-
attention_input,
|
629 |
-
position_ids,
|
630 |
-
attention_mask=attention_mask,
|
631 |
-
layer_id=layer_id,
|
632 |
-
layer_past=layer_past,
|
633 |
-
use_cache=use_cache,
|
634 |
-
output_attentions=output_attentions
|
635 |
-
)
|
636 |
-
|
637 |
-
attention_output = attention_outputs[0]
|
638 |
-
|
639 |
-
outputs = attention_outputs[1:]
|
640 |
-
|
641 |
-
# Residual connection.
|
642 |
-
alpha = (2 * self.num_layers) ** 0.5
|
643 |
-
hidden_states = attention_input * alpha + attention_output
|
644 |
-
|
645 |
-
mlp_input = self.post_attention_layernorm(hidden_states)
|
646 |
-
|
647 |
-
# MLP.
|
648 |
-
mlp_output = self.mlp(mlp_input)
|
649 |
-
|
650 |
-
# Second residual connection.
|
651 |
-
output = mlp_input * alpha + mlp_output
|
652 |
-
|
653 |
-
if use_cache:
|
654 |
-
outputs = (output,) + outputs
|
655 |
-
else:
|
656 |
-
outputs = (output,) + outputs[1:]
|
657 |
-
|
658 |
-
return outputs # hidden_states, present, attentions
|
659 |
-
|
660 |
-
|
661 |
-
class ChatGLMPreTrainedModel(PreTrainedModel):
|
662 |
-
"""
|
663 |
-
An abstract class to handle weights initialization and
|
664 |
-
a simple interface for downloading and loading pretrained models.
|
665 |
-
"""
|
666 |
-
|
667 |
-
is_parallelizable = False
|
668 |
-
supports_gradient_checkpointing = True
|
669 |
-
config_class = ChatGLMConfig
|
670 |
-
base_model_prefix = "transformer"
|
671 |
-
_no_split_modules = ["GLMBlock"]
|
672 |
-
|
673 |
-
def __init__(self, *inputs, **kwargs):
|
674 |
-
super().__init__(*inputs, **kwargs)
|
675 |
-
|
676 |
-
def _init_weights(self, module: nn.Module):
|
677 |
-
"""Initialize the weights."""
|
678 |
-
return
|
679 |
-
|
680 |
-
def get_masks(self, input_ids, device):
|
681 |
-
batch_size, seq_length = input_ids.shape
|
682 |
-
context_lengths = [seq.tolist().index(self.config.bos_token_id) for seq in input_ids]
|
683 |
-
attention_mask = torch.ones((batch_size, seq_length, seq_length), device=device)
|
684 |
-
attention_mask.tril_()
|
685 |
-
for i, context_length in enumerate(context_lengths):
|
686 |
-
attention_mask[i, :, :context_length] = 1
|
687 |
-
attention_mask.unsqueeze_(1)
|
688 |
-
attention_mask = (attention_mask < 0.5).bool()
|
689 |
-
|
690 |
-
return attention_mask
|
691 |
-
|
692 |
-
def get_position_ids(self, input_ids, mask_positions, device, use_gmasks=None):
|
693 |
-
batch_size, seq_length = input_ids.shape
|
694 |
-
if use_gmasks is None:
|
695 |
-
use_gmasks = [False] * batch_size
|
696 |
-
context_lengths = [seq.tolist().index(self.config.bos_token_id) for seq in input_ids]
|
697 |
-
if self.position_encoding_2d:
|
698 |
-
position_ids = torch.arange(seq_length, dtype=torch.long, device=device).unsqueeze(0).repeat(batch_size, 1)
|
699 |
-
for i, context_length in enumerate(context_lengths):
|
700 |
-
position_ids[i, context_length:] = mask_positions[i]
|
701 |
-
block_position_ids = [torch.cat((
|
702 |
-
torch.zeros(context_length, dtype=torch.long, device=device),
|
703 |
-
torch.arange(seq_length - context_length, dtype=torch.long, device=device) + 1
|
704 |
-
)) for context_length in context_lengths]
|
705 |
-
block_position_ids = torch.stack(block_position_ids, dim=0)
|
706 |
-
position_ids = torch.stack((position_ids, block_position_ids), dim=1)
|
707 |
-
else:
|
708 |
-
position_ids = torch.arange(seq_length, dtype=torch.long, device=device).unsqueeze(0).repeat(batch_size, 1)
|
709 |
-
for i, context_length in enumerate(context_lengths):
|
710 |
-
if not use_gmasks[i]:
|
711 |
-
position_ids[context_length:] = mask_positions[i]
|
712 |
-
|
713 |
-
return position_ids
|
714 |
-
|
715 |
-
def _set_gradient_checkpointing(self, module, value=False):
|
716 |
-
if isinstance(module, ChatGLMModel):
|
717 |
-
module.gradient_checkpointing = value
|
718 |
-
|
719 |
-
|
720 |
-
CHATGLM_6B_START_DOCSTRING = r"""
|
721 |
-
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class.
|
722 |
-
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general
|
723 |
-
usage and behavior.
|
724 |
-
|
725 |
-
Parameters:
|
726 |
-
config ([`~ChatGLM6BConfig`]): Model configuration class with all the parameters of the model.
|
727 |
-
Initializing with a config file does not load the weights associated with the model, only the configuration.
|
728 |
-
Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
729 |
-
"""
|
730 |
-
|
731 |
-
CHATGLM_6B_INPUTS_DOCSTRING = r"""
|
732 |
-
Args:
|
733 |
-
input_ids (`torch.LongTensor` of shape `({0})`):
|
734 |
-
Indices of input sequence tokens in the vocabulary.
|
735 |
-
|
736 |
-
Indices can be obtained using [`ChatGLM6BTokenizer`].
|
737 |
-
See [`PreTrainedTokenizer.encode`] and
|
738 |
-
[`PreTrainedTokenizer.__call__`] for details.
|
739 |
-
|
740 |
-
[What are input IDs?](../glossary#input-ids)
|
741 |
-
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
|
742 |
-
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
743 |
-
|
744 |
-
- 1 for tokens that are **not masked**,
|
745 |
-
- 0 for tokens that are **masked**.
|
746 |
-
|
747 |
-
[What are attention masks?](../glossary#attention-mask)
|
748 |
-
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
749 |
-
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`:
|
750 |
-
|
751 |
-
- 0 corresponds to a *sentence A* token,
|
752 |
-
- 1 corresponds to a *sentence B* token.
|
753 |
-
|
754 |
-
[What are token type IDs?](../glossary#token-type-ids)
|
755 |
-
position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
756 |
-
Indices of positions of each input sequence tokens in the position embeddings.
|
757 |
-
Selected in the range `[0, config.max_position_embeddings - 1]`.
|
758 |
-
|
759 |
-
[What are position IDs?](../glossary#position-ids)
|
760 |
-
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
761 |
-
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
762 |
-
|
763 |
-
- 1 indicates the head is **not masked**,
|
764 |
-
- 0 indicates the head is **masked**.
|
765 |
-
|
766 |
-
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
|
767 |
-
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
|
768 |
-
This is useful if you want more control over how to convert *input_ids* indices into associated vectors
|
769 |
-
than the model's internal embedding lookup matrix.
|
770 |
-
output_attentions (`bool`, *optional*):
|
771 |
-
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
772 |
-
tensors for more detail.
|
773 |
-
output_hidden_states (`bool`, *optional*):
|
774 |
-
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
775 |
-
more detail.
|
776 |
-
return_dict (`bool`, *optional*):
|
777 |
-
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
778 |
-
"""
|
779 |
-
|
780 |
-
|
781 |
-
@add_start_docstrings(
|
782 |
-
"The bare ChatGLM-6B Model transformer outputting raw hidden-states without any specific head on top.",
|
783 |
-
CHATGLM_6B_START_DOCSTRING,
|
784 |
-
)
|
785 |
-
class ChatGLMModel(ChatGLMPreTrainedModel):
|
786 |
-
"""
|
787 |
-
|
788 |
-
The model can behave as an encoder (with only self-attention) as well
|
789 |
-
as a decoder, in which case a layer of cross-attention is added between
|
790 |
-
the self-attention layers, following the architecture described in [Attention is
|
791 |
-
all you need](https://arxiv.org/abs/1706.03762) by Ashish Vaswani,
|
792 |
-
Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.
|
793 |
-
|
794 |
-
To behave as an decoder the model needs to be initialized with the
|
795 |
-
`is_decoder` argument of the configuration set to `True`.
|
796 |
-
To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder`
|
797 |
-
argument and `add_cross_attention` set to `True`; an
|
798 |
-
`encoder_hidden_states` is then expected as an input to the forward pass.
|
799 |
-
"""
|
800 |
-
|
801 |
-
def __init__(self, config: ChatGLMConfig, empty_init=True):
|
802 |
-
super().__init__(config)
|
803 |
-
if empty_init:
|
804 |
-
init_method = skip_init
|
805 |
-
else:
|
806 |
-
init_method = default_init
|
807 |
-
# recording parameters
|
808 |
-
self.max_sequence_length = config.max_sequence_length
|
809 |
-
self.hidden_size = config.hidden_size
|
810 |
-
self.params_dtype = torch.half
|
811 |
-
self.num_attention_heads = config.num_attention_heads
|
812 |
-
self.vocab_size = config.vocab_size
|
813 |
-
self.num_layers = config.num_layers
|
814 |
-
self.layernorm_epsilon = config.layernorm_epsilon
|
815 |
-
self.inner_hidden_size = config.inner_hidden_size
|
816 |
-
self.hidden_size_per_attention_head = self.hidden_size // self.num_attention_heads
|
817 |
-
self.position_encoding_2d = config.position_encoding_2d
|
818 |
-
self.pre_seq_len = config.pre_seq_len
|
819 |
-
self.prefix_projection = config.prefix_projection
|
820 |
-
|
821 |
-
self.word_embeddings = init_method(
|
822 |
-
torch.nn.Embedding,
|
823 |
-
num_embeddings=self.vocab_size, embedding_dim=self.hidden_size,
|
824 |
-
dtype=self.params_dtype
|
825 |
-
)
|
826 |
-
self.gradient_checkpointing = False
|
827 |
-
|
828 |
-
def get_layer(layer_id):
|
829 |
-
return GLMBlock(
|
830 |
-
self.hidden_size,
|
831 |
-
self.num_attention_heads,
|
832 |
-
self.layernorm_epsilon,
|
833 |
-
layer_id,
|
834 |
-
inner_hidden_size=self.inner_hidden_size,
|
835 |
-
hidden_size_per_attention_head=self.hidden_size_per_attention_head,
|
836 |
-
layernorm=LayerNorm,
|
837 |
-
use_bias=True,
|
838 |
-
params_dtype=self.params_dtype,
|
839 |
-
position_encoding_2d=self.position_encoding_2d,
|
840 |
-
empty_init=empty_init
|
841 |
-
)
|
842 |
-
|
843 |
-
self.layers = torch.nn.ModuleList(
|
844 |
-
[get_layer(layer_id) for layer_id in range(self.num_layers)]
|
845 |
-
)
|
846 |
-
|
847 |
-
# Final layer norm before output.
|
848 |
-
self.final_layernorm = LayerNorm(self.hidden_size, eps=self.layernorm_epsilon)
|
849 |
-
|
850 |
-
if self.pre_seq_len is not None:
|
851 |
-
for param in self.parameters():
|
852 |
-
param.requires_grad = False
|
853 |
-
self.prefix_tokens = torch.arange(self.pre_seq_len).long()
|
854 |
-
self.prefix_encoder = PrefixEncoder(config)
|
855 |
-
self.dropout = torch.nn.Dropout(0.1)
|
856 |
-
|
857 |
-
# total_params = sum(p.numel() for p in self.parameters())
|
858 |
-
# trainable_params = sum(p.numel() for p in self.parameters() if p.requires_grad)
|
859 |
-
# print("Using p-tuning v2: # trainable_params = {} / {}".format(trainable_params, total_params))
|
860 |
-
|
861 |
-
def get_input_embeddings(self):
|
862 |
-
return self.word_embeddings
|
863 |
-
|
864 |
-
def set_input_embeddings(self, new_embeddings: torch.Tensor):
|
865 |
-
self.word_embeddings = new_embeddings
|
866 |
-
|
867 |
-
def get_prompt(self, batch_size, device, dtype=torch.half):
|
868 |
-
prefix_tokens = self.prefix_tokens.unsqueeze(0).expand(batch_size, -1).to(device)
|
869 |
-
past_key_values = self.prefix_encoder(prefix_tokens).type(dtype)
|
870 |
-
past_key_values = past_key_values.view(
|
871 |
-
batch_size,
|
872 |
-
self.pre_seq_len,
|
873 |
-
self.num_layers * 2,
|
874 |
-
self.num_attention_heads,
|
875 |
-
self.hidden_size // self.num_attention_heads
|
876 |
-
)
|
877 |
-
# seq_len, b, nh, hidden_size
|
878 |
-
past_key_values = self.dropout(past_key_values)
|
879 |
-
past_key_values = past_key_values.permute([2, 1, 0, 3, 4]).split(2)
|
880 |
-
# past_key_values = [(v[0], v[1]) for v in past_key_values]
|
881 |
-
return past_key_values
|
882 |
-
|
883 |
-
@add_start_docstrings_to_model_forward(CHATGLM_6B_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
884 |
-
@add_code_sample_docstrings(
|
885 |
-
checkpoint=_CHECKPOINT_FOR_DOC,
|
886 |
-
output_type=BaseModelOutputWithPastAndCrossAttentions,
|
887 |
-
config_class=_CONFIG_FOR_DOC,
|
888 |
-
)
|
889 |
-
def forward(
|
890 |
-
self,
|
891 |
-
input_ids: Optional[torch.LongTensor] = None,
|
892 |
-
position_ids: Optional[torch.LongTensor] = None,
|
893 |
-
attention_mask: Optional[torch.Tensor] = None,
|
894 |
-
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
|
895 |
-
inputs_embeds: Optional[torch.LongTensor] = None,
|
896 |
-
use_cache: Optional[bool] = None,
|
897 |
-
output_attentions: Optional[bool] = None,
|
898 |
-
output_hidden_states: Optional[bool] = None,
|
899 |
-
return_dict: Optional[bool] = None,
|
900 |
-
) -> Union[Tuple[torch.Tensor, ...], BaseModelOutputWithPast]:
|
901 |
-
|
902 |
-
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
903 |
-
output_hidden_states = (
|
904 |
-
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
905 |
-
)
|
906 |
-
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
907 |
-
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
908 |
-
|
909 |
-
if self.gradient_checkpointing and self.training:
|
910 |
-
if use_cache:
|
911 |
-
logger.warning_once(
|
912 |
-
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
913 |
-
)
|
914 |
-
use_cache = False
|
915 |
-
|
916 |
-
if input_ids is not None and inputs_embeds is not None:
|
917 |
-
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
918 |
-
elif input_ids is not None:
|
919 |
-
batch_size, seq_length = input_ids.shape[:2]
|
920 |
-
elif inputs_embeds is not None:
|
921 |
-
batch_size, seq_length = inputs_embeds.shape[:2]
|
922 |
-
else:
|
923 |
-
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
924 |
-
|
925 |
-
if inputs_embeds is None:
|
926 |
-
inputs_embeds = self.word_embeddings(input_ids)
|
927 |
-
|
928 |
-
if past_key_values is None:
|
929 |
-
if self.pre_seq_len is not None:
|
930 |
-
past_key_values = self.get_prompt(batch_size=input_ids.shape[0], device=input_ids.device,
|
931 |
-
dtype=inputs_embeds.dtype)
|
932 |
-
else:
|
933 |
-
past_key_values = tuple([None] * len(self.layers))
|
934 |
-
|
935 |
-
if attention_mask is None:
|
936 |
-
attention_mask = self.get_masks(
|
937 |
-
input_ids,
|
938 |
-
device=input_ids.device
|
939 |
-
)
|
940 |
-
|
941 |
-
|
942 |
-
if position_ids is None:
|
943 |
-
MASK, gMASK = self.config.mask_token_id, self.config.gmask_token_id
|
944 |
-
seqs = input_ids.tolist()
|
945 |
-
|
946 |
-
mask_positions, use_gmasks = [], []
|
947 |
-
for seq in seqs:
|
948 |
-
mask_token = gMASK if gMASK in seq else MASK
|
949 |
-
use_gmask = mask_token == gMASK
|
950 |
-
mask_positions.append(seq.index(mask_token))
|
951 |
-
use_gmasks.append(use_gmask)
|
952 |
-
|
953 |
-
position_ids = self.get_position_ids(
|
954 |
-
input_ids,
|
955 |
-
mask_positions=mask_positions,
|
956 |
-
device=input_ids.device,
|
957 |
-
use_gmasks=use_gmasks
|
958 |
-
)
|
959 |
-
|
960 |
-
if self.pre_seq_len is not None and attention_mask is not None:
|
961 |
-
prefix_attention_mask = torch.ones(batch_size, 1, input_ids.size(-1), self.pre_seq_len).to(
|
962 |
-
attention_mask.device)
|
963 |
-
prefix_attention_mask = (prefix_attention_mask < 0.5).bool()
|
964 |
-
attention_mask = torch.cat((prefix_attention_mask, attention_mask), dim=3)
|
965 |
-
|
966 |
-
# [seq_len, batch, hidden_size]
|
967 |
-
hidden_states = inputs_embeds.transpose(0, 1)
|
968 |
-
|
969 |
-
presents = () if use_cache else None
|
970 |
-
all_self_attentions = () if output_attentions else None
|
971 |
-
all_hidden_states = () if output_hidden_states else None
|
972 |
-
|
973 |
-
if attention_mask is None:
|
974 |
-
attention_mask = torch.zeros(1, 1, device=input_ids.device).bool()
|
975 |
-
else:
|
976 |
-
attention_mask = attention_mask.to(hidden_states.device)
|
977 |
-
|
978 |
-
for i, layer in enumerate(self.layers):
|
979 |
-
|
980 |
-
if output_hidden_states:
|
981 |
-
all_hidden_states = all_hidden_states + (hidden_states,)
|
982 |
-
layer_past = past_key_values[i]
|
983 |
-
|
984 |
-
if self.gradient_checkpointing and self.training:
|
985 |
-
layer_ret = torch.utils.checkpoint.checkpoint(
|
986 |
-
layer,
|
987 |
-
hidden_states,
|
988 |
-
position_ids,
|
989 |
-
attention_mask,
|
990 |
-
torch.tensor(i),
|
991 |
-
layer_past,
|
992 |
-
use_cache,
|
993 |
-
output_attentions
|
994 |
-
)
|
995 |
-
else:
|
996 |
-
layer_ret = layer(
|
997 |
-
hidden_states,
|
998 |
-
position_ids=position_ids,
|
999 |
-
attention_mask=attention_mask,
|
1000 |
-
layer_id=torch.tensor(i),
|
1001 |
-
layer_past=layer_past,
|
1002 |
-
use_cache=use_cache,
|
1003 |
-
output_attentions=output_attentions
|
1004 |
-
)
|
1005 |
-
|
1006 |
-
hidden_states = layer_ret[0]
|
1007 |
-
|
1008 |
-
if use_cache:
|
1009 |
-
presents = presents + (layer_ret[1],)
|
1010 |
-
|
1011 |
-
if output_attentions:
|
1012 |
-
all_self_attentions = all_self_attentions + (layer_ret[2 if use_cache else 1],)
|
1013 |
-
|
1014 |
-
# Final layer norm.
|
1015 |
-
hidden_states = self.final_layernorm(hidden_states)
|
1016 |
-
|
1017 |
-
if output_hidden_states:
|
1018 |
-
all_hidden_states = all_hidden_states + (hidden_states,)
|
1019 |
-
|
1020 |
-
if not return_dict:
|
1021 |
-
return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None)
|
1022 |
-
|
1023 |
-
return BaseModelOutputWithPast(
|
1024 |
-
last_hidden_state=hidden_states,
|
1025 |
-
past_key_values=presents,
|
1026 |
-
hidden_states=all_hidden_states,
|
1027 |
-
attentions=all_self_attentions,
|
1028 |
-
)
|
1029 |
-
|
1030 |
-
|
1031 |
-
class ChatGLMForConditionalGeneration(ChatGLMPreTrainedModel):
|
1032 |
-
def __init__(self, config: ChatGLMConfig, empty_init=True):
|
1033 |
-
super().__init__(config)
|
1034 |
-
if empty_init:
|
1035 |
-
init_method = skip_init
|
1036 |
-
else:
|
1037 |
-
init_method = default_init
|
1038 |
-
|
1039 |
-
# self.hidden_size = config.hidden_size
|
1040 |
-
# self.params_dtype = torch.half
|
1041 |
-
# self.vocab_size = config.vocab_size
|
1042 |
-
self.max_sequence_length = config.max_sequence_length
|
1043 |
-
|
1044 |
-
self.position_encoding_2d = config.position_encoding_2d
|
1045 |
-
|
1046 |
-
self.transformer = ChatGLMModel(config, empty_init=empty_init)
|
1047 |
-
|
1048 |
-
self.lm_head = init_method(
|
1049 |
-
nn.Linear,
|
1050 |
-
config.hidden_size,
|
1051 |
-
config.vocab_size,
|
1052 |
-
bias=False,
|
1053 |
-
dtype=torch.half
|
1054 |
-
)
|
1055 |
-
|
1056 |
-
self.config = config
|
1057 |
-
|
1058 |
-
self.quantized = False
|
1059 |
-
|
1060 |
-
if self.config.quantization_bit:
|
1061 |
-
self.quantize(self.config.quantization_bit, empty_init=True)
|
1062 |
-
|
1063 |
-
def get_output_embeddings(self):
|
1064 |
-
return self.lm_head
|
1065 |
-
|
1066 |
-
def set_output_embeddings(self, new_embeddings):
|
1067 |
-
self.lm_head = new_embeddings
|
1068 |
-
|
1069 |
-
def _update_model_kwargs_for_generation(
|
1070 |
-
self,
|
1071 |
-
outputs: ModelOutput,
|
1072 |
-
model_kwargs: Dict[str, Any],
|
1073 |
-
is_encoder_decoder: bool = False,
|
1074 |
-
standardize_cache_format: bool = False,
|
1075 |
-
) -> Dict[str, Any]:
|
1076 |
-
# update past_key_values
|
1077 |
-
model_kwargs["past_key_values"] = self._extract_past_from_model_output(
|
1078 |
-
outputs, standardize_cache_format=standardize_cache_format
|
1079 |
-
)
|
1080 |
-
|
1081 |
-
# update attention mask
|
1082 |
-
if "attention_mask" in model_kwargs:
|
1083 |
-
attention_mask = model_kwargs["attention_mask"]
|
1084 |
-
if attention_mask is not None and attention_mask.dtype == torch.bool:
|
1085 |
-
attention_mask = torch.cat(
|
1086 |
-
[attention_mask, attention_mask.new_ones((*attention_mask.shape[:3], 1))], dim=3)
|
1087 |
-
new_attention_mask = attention_mask[:, :, -1:].clone()
|
1088 |
-
new_attention_mask[..., -1] = False
|
1089 |
-
model_kwargs["attention_mask"] = torch.cat(
|
1090 |
-
[attention_mask, new_attention_mask], dim=2
|
1091 |
-
)
|
1092 |
-
|
1093 |
-
# update position ids
|
1094 |
-
if "position_ids" in model_kwargs:
|
1095 |
-
position_ids = model_kwargs["position_ids"]
|
1096 |
-
new_position_id = position_ids[..., -1:].clone()
|
1097 |
-
new_position_id[:, 1, :] += 1
|
1098 |
-
model_kwargs["position_ids"] = torch.cat(
|
1099 |
-
[position_ids, new_position_id], dim=-1
|
1100 |
-
)
|
1101 |
-
|
1102 |
-
return model_kwargs
|
1103 |
-
|
1104 |
-
def prepare_inputs_for_generation(
|
1105 |
-
self,
|
1106 |
-
input_ids: torch.LongTensor,
|
1107 |
-
past: Optional[torch.Tensor] = None,
|
1108 |
-
past_key_values: Optional[torch.Tensor] = None,
|
1109 |
-
attention_mask: Optional[torch.Tensor] = None,
|
1110 |
-
position_ids: Optional[torch.Tensor] = None,
|
1111 |
-
**kwargs
|
1112 |
-
) -> dict:
|
1113 |
-
batch_size, seq_length = input_ids.shape
|
1114 |
-
MASK, gMASK = self.config.mask_token_id, self.config.gmask_token_id
|
1115 |
-
seqs = input_ids.tolist()
|
1116 |
-
mask_positions, use_gmasks = [], []
|
1117 |
-
for seq in seqs:
|
1118 |
-
mask_token = gMASK if gMASK in seq else MASK
|
1119 |
-
use_gmask = mask_token == gMASK
|
1120 |
-
mask_positions.append(seq.index(mask_token))
|
1121 |
-
use_gmasks.append(use_gmask)
|
1122 |
-
|
1123 |
-
# only last token for input_ids if past is not None
|
1124 |
-
if past is not None or past_key_values is not None:
|
1125 |
-
last_token = input_ids[:, -1].unsqueeze(-1)
|
1126 |
-
if attention_mask is not None and attention_mask.dtype == torch.bool:
|
1127 |
-
attention_mask = attention_mask[:, :, -1:]
|
1128 |
-
else:
|
1129 |
-
attention_mask = None
|
1130 |
-
if position_ids is not None:
|
1131 |
-
position_ids = position_ids[..., -1:]
|
1132 |
-
else:
|
1133 |
-
context_lengths = [seq.index(self.config.bos_token_id) for seq in seqs]
|
1134 |
-
if self.position_encoding_2d:
|
1135 |
-
position_ids = torch.tensor(
|
1136 |
-
[[mask_position, seq_length - context_length] for mask_position, context_length in
|
1137 |
-
zip(mask_positions, context_lengths)], dtype=torch.long, device=input_ids.device).unsqueeze(-1)
|
1138 |
-
else:
|
1139 |
-
position_ids = torch.tensor([mask_position for mask_position in mask_positions], dtype=torch.long,
|
1140 |
-
device=input_ids.device).unsqueeze(-1)
|
1141 |
-
|
1142 |
-
if past is None:
|
1143 |
-
past = past_key_values
|
1144 |
-
return {
|
1145 |
-
"input_ids": last_token,
|
1146 |
-
"past_key_values": past,
|
1147 |
-
"position_ids": position_ids,
|
1148 |
-
"attention_mask": attention_mask
|
1149 |
-
}
|
1150 |
-
else:
|
1151 |
-
if attention_mask is not None and attention_mask.dtype != torch.bool:
|
1152 |
-
logger.warning_once(f"The dtype of attention mask ({attention_mask.dtype}) is not bool")
|
1153 |
-
attention_mask = None
|
1154 |
-
if attention_mask is None:
|
1155 |
-
attention_mask = self.get_masks(
|
1156 |
-
input_ids,
|
1157 |
-
device=input_ids.device
|
1158 |
-
)
|
1159 |
-
if position_ids is None:
|
1160 |
-
position_ids = self.get_position_ids(
|
1161 |
-
input_ids,
|
1162 |
-
device=input_ids.device,
|
1163 |
-
mask_positions=mask_positions,
|
1164 |
-
use_gmasks=use_gmasks
|
1165 |
-
)
|
1166 |
-
|
1167 |
-
return {
|
1168 |
-
"input_ids": input_ids,
|
1169 |
-
"past_key_values": past,
|
1170 |
-
"position_ids": position_ids,
|
1171 |
-
"attention_mask": attention_mask
|
1172 |
-
}
|
1173 |
-
|
1174 |
-
def forward(
|
1175 |
-
self,
|
1176 |
-
input_ids: Optional[torch.Tensor] = None,
|
1177 |
-
position_ids: Optional[torch.Tensor] = None,
|
1178 |
-
attention_mask: Optional[torch.Tensor] = None,
|
1179 |
-
past_key_values: Optional[Tuple[torch.FloatTensor]] = None,
|
1180 |
-
inputs_embeds: Optional[torch.Tensor] = None,
|
1181 |
-
labels: Optional[torch.Tensor] = None,
|
1182 |
-
use_cache: Optional[bool] = None,
|
1183 |
-
output_attentions: Optional[bool] = None,
|
1184 |
-
output_hidden_states: Optional[bool] = None,
|
1185 |
-
return_dict: Optional[bool] = None,
|
1186 |
-
):
|
1187 |
-
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
1188 |
-
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1189 |
-
|
1190 |
-
transformer_outputs = self.transformer(
|
1191 |
-
input_ids=input_ids,
|
1192 |
-
position_ids=position_ids,
|
1193 |
-
attention_mask=attention_mask,
|
1194 |
-
past_key_values=past_key_values,
|
1195 |
-
inputs_embeds=inputs_embeds,
|
1196 |
-
use_cache=use_cache,
|
1197 |
-
output_attentions=output_attentions,
|
1198 |
-
output_hidden_states=output_hidden_states,
|
1199 |
-
return_dict=return_dict,
|
1200 |
-
)
|
1201 |
-
|
1202 |
-
hidden_states = transformer_outputs[0]
|
1203 |
-
|
1204 |
-
lm_logits = self.lm_head(hidden_states).permute(1, 0, 2).contiguous()
|
1205 |
-
|
1206 |
-
loss = None
|
1207 |
-
if labels is not None:
|
1208 |
-
lm_logits = lm_logits.to(torch.float32)
|
1209 |
-
|
1210 |
-
# Shift so that tokens < n predict n
|
1211 |
-
shift_logits = lm_logits[..., :-1, :].contiguous()
|
1212 |
-
shift_labels = labels[..., 1:].contiguous()
|
1213 |
-
# Flatten the tokens
|
1214 |
-
loss_fct = CrossEntropyLoss(ignore_index=-100)
|
1215 |
-
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
|
1216 |
-
|
1217 |
-
lm_logits = lm_logits.to(hidden_states.dtype)
|
1218 |
-
loss = loss.to(hidden_states.dtype)
|
1219 |
-
|
1220 |
-
if not return_dict:
|
1221 |
-
output = (lm_logits,) + transformer_outputs[1:]
|
1222 |
-
return ((loss,) + output) if loss is not None else output
|
1223 |
-
|
1224 |
-
return CausalLMOutputWithPast(
|
1225 |
-
loss=loss,
|
1226 |
-
logits=lm_logits,
|
1227 |
-
past_key_values=transformer_outputs.past_key_values,
|
1228 |
-
hidden_states=transformer_outputs.hidden_states,
|
1229 |
-
attentions=transformer_outputs.attentions,
|
1230 |
-
)
|
1231 |
-
|
1232 |
-
@staticmethod
|
1233 |
-
def _reorder_cache(
|
1234 |
-
past: Tuple[Tuple[torch.Tensor, torch.Tensor], ...], beam_idx: torch.LongTensor
|
1235 |
-
) -> Tuple[Tuple[torch.Tensor, torch.Tensor], ...]:
|
1236 |
-
"""
|
1237 |
-
This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or
|
1238 |
-
[`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
|
1239 |
-
beam_idx at every generation step.
|
1240 |
-
|
1241 |
-
Output shares the same memory storage as `past`.
|
1242 |
-
"""
|
1243 |
-
return tuple(
|
1244 |
-
(
|
1245 |
-
layer_past[0].index_select(1, beam_idx.to(layer_past[0].device)),
|
1246 |
-
layer_past[1].index_select(1, beam_idx.to(layer_past[1].device)),
|
1247 |
-
)
|
1248 |
-
for layer_past in past
|
1249 |
-
)
|
1250 |
-
|
1251 |
-
def process_response(self, response):
|
1252 |
-
response = response.strip()
|
1253 |
-
response = response.replace("[[训练时间]]", "2023年")
|
1254 |
-
punkts = [
|
1255 |
-
[",", ","],
|
1256 |
-
["!", "!"],
|
1257 |
-
[":", ":"],
|
1258 |
-
[";", ";"],
|
1259 |
-
["\?", "?"],
|
1260 |
-
]
|
1261 |
-
for item in punkts:
|
1262 |
-
response = re.sub(r"([\u4e00-\u9fff])%s" % item[0], r"\1%s" % item[1], response)
|
1263 |
-
response = re.sub(r"%s([\u4e00-\u9fff])" % item[0], r"%s\1" % item[1], response)
|
1264 |
-
return response
|
1265 |
-
|
1266 |
-
@torch.no_grad()
|
1267 |
-
def chat(self, tokenizer, query: str, history: List[Tuple[str, str]] = None, max_length: int = 2048, num_beams=1,
|
1268 |
-
do_sample=True, top_p=0.7, temperature=0.95, logits_processor=None, **kwargs):
|
1269 |
-
if history is None:
|
1270 |
-
history = []
|
1271 |
-
if logits_processor is None:
|
1272 |
-
logits_processor = LogitsProcessorList()
|
1273 |
-
logits_processor.append(InvalidScoreLogitsProcessor())
|
1274 |
-
gen_kwargs = {"max_length": max_length, "num_beams": num_beams, "do_sample": do_sample, "top_p": top_p,
|
1275 |
-
"temperature": temperature, "logits_processor": logits_processor, **kwargs}
|
1276 |
-
if not history:
|
1277 |
-
prompt = query
|
1278 |
-
else:
|
1279 |
-
prompt = ""
|
1280 |
-
for i, (old_query, response) in enumerate(history):
|
1281 |
-
prompt += "[Round {}]\n问:{}\n答:{}\n".format(i, old_query, response)
|
1282 |
-
prompt += "[Round {}]\n问:{}\n答:".format(len(history), query)
|
1283 |
-
inputs = tokenizer([prompt], return_tensors="pt")
|
1284 |
-
inputs = inputs.to(self.device)
|
1285 |
-
outputs = self.generate(**inputs, **gen_kwargs)
|
1286 |
-
outputs = outputs.tolist()[0][len(inputs["input_ids"][0]):]
|
1287 |
-
response = tokenizer.decode(outputs)
|
1288 |
-
response = self.process_response(response)
|
1289 |
-
history = history + [(query, response)]
|
1290 |
-
return response, history
|
1291 |
-
|
1292 |
-
@torch.no_grad()
|
1293 |
-
def stream_chat(self, tokenizer, query: str, history: List[Tuple[str, str]] = None, max_length: int = 2048,
|
1294 |
-
do_sample=True, top_p=0.7, temperature=0.95, logits_processor=None, **kwargs):
|
1295 |
-
if history is None:
|
1296 |
-
history = []
|
1297 |
-
if logits_processor is None:
|
1298 |
-
logits_processor = LogitsProcessorList()
|
1299 |
-
logits_processor.append(InvalidScoreLogitsProcessor())
|
1300 |
-
gen_kwargs = {"max_length": max_length, "do_sample": do_sample, "top_p": top_p,
|
1301 |
-
"temperature": temperature, "logits_processor": logits_processor, **kwargs}
|
1302 |
-
if not history:
|
1303 |
-
prompt = query
|
1304 |
-
else:
|
1305 |
-
prompt = ""
|
1306 |
-
for i, (old_query, response) in enumerate(history):
|
1307 |
-
prompt += "[Round {}]\n问:{}\n答:{}\n".format(i, old_query, response)
|
1308 |
-
prompt += "[Round {}]\n问:{}\n答:".format(len(history), query)
|
1309 |
-
inputs = tokenizer([prompt], return_tensors="pt")
|
1310 |
-
inputs = inputs.to(self.device)
|
1311 |
-
for outputs in self.stream_generate(**inputs, **gen_kwargs):
|
1312 |
-
outputs = outputs.tolist()[0][len(inputs["input_ids"][0]):]
|
1313 |
-
response = tokenizer.decode(outputs)
|
1314 |
-
response = self.process_response(response)
|
1315 |
-
new_history = history + [(query, response)]
|
1316 |
-
yield response, new_history
|
1317 |
-
|
1318 |
-
@torch.no_grad()
|
1319 |
-
def stream_generate(
|
1320 |
-
self,
|
1321 |
-
input_ids,
|
1322 |
-
generation_config: Optional[GenerationConfig] = None,
|
1323 |
-
logits_processor: Optional[LogitsProcessorList] = None,
|
1324 |
-
stopping_criteria: Optional[StoppingCriteriaList] = None,
|
1325 |
-
prefix_allowed_tokens_fn: Optional[Callable[[int, torch.Tensor], List[int]]] = None,
|
1326 |
-
**kwargs,
|
1327 |
-
):
|
1328 |
-
batch_size, input_ids_seq_length = input_ids.shape[0], input_ids.shape[-1]
|
1329 |
-
|
1330 |
-
if generation_config is None:
|
1331 |
-
generation_config = self.generation_config
|
1332 |
-
generation_config = copy.deepcopy(generation_config)
|
1333 |
-
model_kwargs = generation_config.update(**kwargs)
|
1334 |
-
bos_token_id, eos_token_id = generation_config.bos_token_id, generation_config.eos_token_id
|
1335 |
-
|
1336 |
-
if isinstance(eos_token_id, int):
|
1337 |
-
eos_token_id = [eos_token_id]
|
1338 |
-
|
1339 |
-
has_default_max_length = kwargs.get("max_length") is None and generation_config.max_length is not None
|
1340 |
-
if has_default_max_length and generation_config.max_new_tokens is None:
|
1341 |
-
warnings.warn(
|
1342 |
-
f"Using `max_length`'s default ({generation_config.max_length}) to control the generation length. "
|
1343 |
-
"This behaviour is deprecated and will be removed from the config in v5 of Transformers -- we"
|
1344 |
-
" recommend using `max_new_tokens` to control the maximum length of the generation.",
|
1345 |
-
UserWarning,
|
1346 |
-
)
|
1347 |
-
elif generation_config.max_new_tokens is not None:
|
1348 |
-
generation_config.max_length = generation_config.max_new_tokens + input_ids_seq_length
|
1349 |
-
if not has_default_max_length:
|
1350 |
-
logger.warn(
|
1351 |
-
f"Both `max_new_tokens` (={generation_config.max_new_tokens}) and `max_length`(="
|
1352 |
-
f"{generation_config.max_length}) seem to have been set. `max_new_tokens` will take precedence. "
|
1353 |
-
"Please refer to the documentation for more information. "
|
1354 |
-
"(https://huggingface.co/docs/transformers/main/en/main_classes/text_generation)",
|
1355 |
-
UserWarning,
|
1356 |
-
)
|
1357 |
-
|
1358 |
-
if input_ids_seq_length >= generation_config.max_length:
|
1359 |
-
input_ids_string = "decoder_input_ids" if self.config.is_encoder_decoder else "input_ids"
|
1360 |
-
logger.warning(
|
1361 |
-
f"Input length of {input_ids_string} is {input_ids_seq_length}, but `max_length` is set to"
|
1362 |
-
f" {generation_config.max_length}. This can lead to unexpected behavior. You should consider"
|
1363 |
-
" increasing `max_new_tokens`."
|
1364 |
-
)
|
1365 |
-
|
1366 |
-
# 2. Set generation parameters if not already defined
|
1367 |
-
logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList()
|
1368 |
-
stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList()
|
1369 |
-
|
1370 |
-
logits_processor = self._get_logits_processor(
|
1371 |
-
generation_config=generation_config,
|
1372 |
-
input_ids_seq_length=input_ids_seq_length,
|
1373 |
-
encoder_input_ids=input_ids,
|
1374 |
-
prefix_allowed_tokens_fn=prefix_allowed_tokens_fn,
|
1375 |
-
logits_processor=logits_processor,
|
1376 |
-
)
|
1377 |
-
|
1378 |
-
stopping_criteria = self._get_stopping_criteria(
|
1379 |
-
generation_config=generation_config, stopping_criteria=stopping_criteria
|
1380 |
-
)
|
1381 |
-
logits_warper = self._get_logits_warper(generation_config)
|
1382 |
-
|
1383 |
-
unfinished_sequences = input_ids.new(input_ids.shape[0]).fill_(1)
|
1384 |
-
scores = None
|
1385 |
-
while True:
|
1386 |
-
model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)
|
1387 |
-
# forward pass to get next token
|
1388 |
-
outputs = self(
|
1389 |
-
**model_inputs,
|
1390 |
-
return_dict=True,
|
1391 |
-
output_attentions=False,
|
1392 |
-
output_hidden_states=False,
|
1393 |
-
)
|
1394 |
-
|
1395 |
-
next_token_logits = outputs.logits[:, -1, :]
|
1396 |
-
|
1397 |
-
# pre-process distribution
|
1398 |
-
next_token_scores = logits_processor(input_ids, next_token_logits)
|
1399 |
-
next_token_scores = logits_warper(input_ids, next_token_scores)
|
1400 |
-
|
1401 |
-
# sample
|
1402 |
-
probs = nn.functional.softmax(next_token_scores, dim=-1)
|
1403 |
-
if generation_config.do_sample:
|
1404 |
-
next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1)
|
1405 |
-
else:
|
1406 |
-
next_tokens = torch.argmax(probs, dim=-1)
|
1407 |
-
|
1408 |
-
# update generated ids, model inputs, and length for next step
|
1409 |
-
input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1)
|
1410 |
-
model_kwargs = self._update_model_kwargs_for_generation(
|
1411 |
-
outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder
|
1412 |
-
)
|
1413 |
-
unfinished_sequences = unfinished_sequences.mul((sum(next_tokens != i for i in eos_token_id)).long())
|
1414 |
-
|
1415 |
-
# stop when each sentence is finished, or if we exceed the maximum length
|
1416 |
-
if unfinished_sequences.max() == 0 or stopping_criteria(input_ids, scores):
|
1417 |
-
break
|
1418 |
-
yield input_ids
|
1419 |
-
|
1420 |
-
def quantize(self, bits: int, empty_init=False, **kwargs):
|
1421 |
-
if bits == 0:
|
1422 |
-
return
|
1423 |
-
|
1424 |
-
from .quantization import quantize
|
1425 |
-
|
1426 |
-
if self.quantized:
|
1427 |
-
logger.info("Already quantized.")
|
1428 |
-
return self
|
1429 |
-
|
1430 |
-
self.quantized = True
|
1431 |
-
|
1432 |
-
self.config.quantization_bit = bits
|
1433 |
-
|
1434 |
-
self.transformer = quantize(self.transformer, bits, empty_init=empty_init, **kwargs)
|
1435 |
-
return self
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
pytorch_model-00001-of-00002.bin
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:6fc25b9378f2d8ec945546a079538579393a108a89b8fd0d80d243ee607a5096
|
3 |
-
size 12346620825
|
|
|
|
|
|
|
|
pytorch_model.bin.index.json
DELETED
@@ -1,375 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"metadata": {
|
3 |
-
"total_size": 13415859968
|
4 |
-
},
|
5 |
-
"weight_map": {
|
6 |
-
"lm_head.weight": "pytorch_model-00002-of-00002.bin",
|
7 |
-
"transformer.final_layernorm.bias": "pytorch_model-00002-of-00002.bin",
|
8 |
-
"transformer.final_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
9 |
-
"transformer.layers.0.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
|
10 |
-
"transformer.layers.0.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
|
11 |
-
"transformer.layers.0.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
|
12 |
-
"transformer.layers.0.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
|
13 |
-
"transformer.layers.0.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
14 |
-
"transformer.layers.0.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
|
15 |
-
"transformer.layers.0.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
16 |
-
"transformer.layers.0.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
|
17 |
-
"transformer.layers.0.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
|
18 |
-
"transformer.layers.0.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
|
19 |
-
"transformer.layers.0.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
|
20 |
-
"transformer.layers.0.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
|
21 |
-
"transformer.layers.0.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
22 |
-
"transformer.layers.1.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
|
23 |
-
"transformer.layers.1.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
|
24 |
-
"transformer.layers.1.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
|
25 |
-
"transformer.layers.1.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
|
26 |
-
"transformer.layers.1.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
27 |
-
"transformer.layers.1.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
|
28 |
-
"transformer.layers.1.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
29 |
-
"transformer.layers.1.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
|
30 |
-
"transformer.layers.1.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
|
31 |
-
"transformer.layers.1.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
|
32 |
-
"transformer.layers.1.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
|
33 |
-
"transformer.layers.1.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
|
34 |
-
"transformer.layers.1.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
35 |
-
"transformer.layers.10.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
|
36 |
-
"transformer.layers.10.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
|
37 |
-
"transformer.layers.10.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
|
38 |
-
"transformer.layers.10.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
|
39 |
-
"transformer.layers.10.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
40 |
-
"transformer.layers.10.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
|
41 |
-
"transformer.layers.10.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
42 |
-
"transformer.layers.10.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
|
43 |
-
"transformer.layers.10.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
|
44 |
-
"transformer.layers.10.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
|
45 |
-
"transformer.layers.10.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
|
46 |
-
"transformer.layers.10.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
|
47 |
-
"transformer.layers.10.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
48 |
-
"transformer.layers.11.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
|
49 |
-
"transformer.layers.11.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
|
50 |
-
"transformer.layers.11.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
|
51 |
-
"transformer.layers.11.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
|
52 |
-
"transformer.layers.11.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
53 |
-
"transformer.layers.11.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
|
54 |
-
"transformer.layers.11.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
55 |
-
"transformer.layers.11.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
|
56 |
-
"transformer.layers.11.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
|
57 |
-
"transformer.layers.11.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
|
58 |
-
"transformer.layers.11.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
|
59 |
-
"transformer.layers.11.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
|
60 |
-
"transformer.layers.11.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
61 |
-
"transformer.layers.12.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
|
62 |
-
"transformer.layers.12.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
|
63 |
-
"transformer.layers.12.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
|
64 |
-
"transformer.layers.12.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
|
65 |
-
"transformer.layers.12.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
66 |
-
"transformer.layers.12.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
|
67 |
-
"transformer.layers.12.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
68 |
-
"transformer.layers.12.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
|
69 |
-
"transformer.layers.12.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
|
70 |
-
"transformer.layers.12.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
|
71 |
-
"transformer.layers.12.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
|
72 |
-
"transformer.layers.12.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
|
73 |
-
"transformer.layers.12.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
74 |
-
"transformer.layers.13.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
|
75 |
-
"transformer.layers.13.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
|
76 |
-
"transformer.layers.13.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
|
77 |
-
"transformer.layers.13.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
|
78 |
-
"transformer.layers.13.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
79 |
-
"transformer.layers.13.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
|
80 |
-
"transformer.layers.13.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
81 |
-
"transformer.layers.13.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
|
82 |
-
"transformer.layers.13.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
|
83 |
-
"transformer.layers.13.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
|
84 |
-
"transformer.layers.13.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
|
85 |
-
"transformer.layers.13.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
|
86 |
-
"transformer.layers.13.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
87 |
-
"transformer.layers.14.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
|
88 |
-
"transformer.layers.14.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
|
89 |
-
"transformer.layers.14.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
|
90 |
-
"transformer.layers.14.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
|
91 |
-
"transformer.layers.14.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
92 |
-
"transformer.layers.14.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
|
93 |
-
"transformer.layers.14.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
94 |
-
"transformer.layers.14.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
|
95 |
-
"transformer.layers.14.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
|
96 |
-
"transformer.layers.14.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
|
97 |
-
"transformer.layers.14.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
|
98 |
-
"transformer.layers.14.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
|
99 |
-
"transformer.layers.14.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
100 |
-
"transformer.layers.15.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
|
101 |
-
"transformer.layers.15.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
|
102 |
-
"transformer.layers.15.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
|
103 |
-
"transformer.layers.15.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
|
104 |
-
"transformer.layers.15.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
105 |
-
"transformer.layers.15.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
|
106 |
-
"transformer.layers.15.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
107 |
-
"transformer.layers.15.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
|
108 |
-
"transformer.layers.15.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
|
109 |
-
"transformer.layers.15.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
|
110 |
-
"transformer.layers.15.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
|
111 |
-
"transformer.layers.15.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
|
112 |
-
"transformer.layers.15.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
113 |
-
"transformer.layers.16.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
|
114 |
-
"transformer.layers.16.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
|
115 |
-
"transformer.layers.16.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
|
116 |
-
"transformer.layers.16.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
|
117 |
-
"transformer.layers.16.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
118 |
-
"transformer.layers.16.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
|
119 |
-
"transformer.layers.16.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
120 |
-
"transformer.layers.16.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
|
121 |
-
"transformer.layers.16.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
|
122 |
-
"transformer.layers.16.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
|
123 |
-
"transformer.layers.16.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
|
124 |
-
"transformer.layers.16.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
|
125 |
-
"transformer.layers.16.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
126 |
-
"transformer.layers.17.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
|
127 |
-
"transformer.layers.17.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
|
128 |
-
"transformer.layers.17.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
|
129 |
-
"transformer.layers.17.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
|
130 |
-
"transformer.layers.17.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
131 |
-
"transformer.layers.17.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
|
132 |
-
"transformer.layers.17.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
133 |
-
"transformer.layers.17.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
|
134 |
-
"transformer.layers.17.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
|
135 |
-
"transformer.layers.17.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
|
136 |
-
"transformer.layers.17.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
|
137 |
-
"transformer.layers.17.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
|
138 |
-
"transformer.layers.17.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
139 |
-
"transformer.layers.18.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
|
140 |
-
"transformer.layers.18.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
|
141 |
-
"transformer.layers.18.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
|
142 |
-
"transformer.layers.18.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
|
143 |
-
"transformer.layers.18.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
144 |
-
"transformer.layers.18.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
|
145 |
-
"transformer.layers.18.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
146 |
-
"transformer.layers.18.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
|
147 |
-
"transformer.layers.18.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
|
148 |
-
"transformer.layers.18.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
|
149 |
-
"transformer.layers.18.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
|
150 |
-
"transformer.layers.18.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
|
151 |
-
"transformer.layers.18.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
152 |
-
"transformer.layers.19.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
|
153 |
-
"transformer.layers.19.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
|
154 |
-
"transformer.layers.19.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
|
155 |
-
"transformer.layers.19.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
|
156 |
-
"transformer.layers.19.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
157 |
-
"transformer.layers.19.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
|
158 |
-
"transformer.layers.19.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
159 |
-
"transformer.layers.19.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
|
160 |
-
"transformer.layers.19.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
|
161 |
-
"transformer.layers.19.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
|
162 |
-
"transformer.layers.19.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
|
163 |
-
"transformer.layers.19.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
|
164 |
-
"transformer.layers.19.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
165 |
-
"transformer.layers.2.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
|
166 |
-
"transformer.layers.2.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
|
167 |
-
"transformer.layers.2.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
|
168 |
-
"transformer.layers.2.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
|
169 |
-
"transformer.layers.2.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
170 |
-
"transformer.layers.2.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
|
171 |
-
"transformer.layers.2.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
172 |
-
"transformer.layers.2.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
|
173 |
-
"transformer.layers.2.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
|
174 |
-
"transformer.layers.2.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
|
175 |
-
"transformer.layers.2.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
|
176 |
-
"transformer.layers.2.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
|
177 |
-
"transformer.layers.2.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
178 |
-
"transformer.layers.20.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
|
179 |
-
"transformer.layers.20.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
|
180 |
-
"transformer.layers.20.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
|
181 |
-
"transformer.layers.20.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
|
182 |
-
"transformer.layers.20.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
183 |
-
"transformer.layers.20.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
|
184 |
-
"transformer.layers.20.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
185 |
-
"transformer.layers.20.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
|
186 |
-
"transformer.layers.20.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
|
187 |
-
"transformer.layers.20.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
|
188 |
-
"transformer.layers.20.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
|
189 |
-
"transformer.layers.20.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
|
190 |
-
"transformer.layers.20.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
191 |
-
"transformer.layers.21.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
|
192 |
-
"transformer.layers.21.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
|
193 |
-
"transformer.layers.21.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
|
194 |
-
"transformer.layers.21.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
|
195 |
-
"transformer.layers.21.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
196 |
-
"transformer.layers.21.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
|
197 |
-
"transformer.layers.21.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
198 |
-
"transformer.layers.21.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
|
199 |
-
"transformer.layers.21.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
|
200 |
-
"transformer.layers.21.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
|
201 |
-
"transformer.layers.21.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
|
202 |
-
"transformer.layers.21.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
|
203 |
-
"transformer.layers.21.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
204 |
-
"transformer.layers.22.attention.dense.bias": "pytorch_model-00002-of-00002.bin",
|
205 |
-
"transformer.layers.22.attention.dense.weight": "pytorch_model-00002-of-00002.bin",
|
206 |
-
"transformer.layers.22.attention.query_key_value.bias": "pytorch_model-00002-of-00002.bin",
|
207 |
-
"transformer.layers.22.attention.query_key_value.weight": "pytorch_model-00002-of-00002.bin",
|
208 |
-
"transformer.layers.22.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
209 |
-
"transformer.layers.22.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
|
210 |
-
"transformer.layers.22.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
211 |
-
"transformer.layers.22.mlp.dense_4h_to_h.bias": "pytorch_model-00002-of-00002.bin",
|
212 |
-
"transformer.layers.22.mlp.dense_4h_to_h.weight": "pytorch_model-00002-of-00002.bin",
|
213 |
-
"transformer.layers.22.mlp.dense_h_to_4h.bias": "pytorch_model-00002-of-00002.bin",
|
214 |
-
"transformer.layers.22.mlp.dense_h_to_4h.weight": "pytorch_model-00002-of-00002.bin",
|
215 |
-
"transformer.layers.22.post_attention_layernorm.bias": "pytorch_model-00002-of-00002.bin",
|
216 |
-
"transformer.layers.22.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
217 |
-
"transformer.layers.23.attention.dense.bias": "pytorch_model-00002-of-00002.bin",
|
218 |
-
"transformer.layers.23.attention.dense.weight": "pytorch_model-00002-of-00002.bin",
|
219 |
-
"transformer.layers.23.attention.query_key_value.bias": "pytorch_model-00002-of-00002.bin",
|
220 |
-
"transformer.layers.23.attention.query_key_value.weight": "pytorch_model-00002-of-00002.bin",
|
221 |
-
"transformer.layers.23.attention.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
|
222 |
-
"transformer.layers.23.input_layernorm.bias": "pytorch_model-00002-of-00002.bin",
|
223 |
-
"transformer.layers.23.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
224 |
-
"transformer.layers.23.mlp.dense_4h_to_h.bias": "pytorch_model-00002-of-00002.bin",
|
225 |
-
"transformer.layers.23.mlp.dense_4h_to_h.weight": "pytorch_model-00002-of-00002.bin",
|
226 |
-
"transformer.layers.23.mlp.dense_h_to_4h.bias": "pytorch_model-00002-of-00002.bin",
|
227 |
-
"transformer.layers.23.mlp.dense_h_to_4h.weight": "pytorch_model-00002-of-00002.bin",
|
228 |
-
"transformer.layers.23.post_attention_layernorm.bias": "pytorch_model-00002-of-00002.bin",
|
229 |
-
"transformer.layers.23.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
230 |
-
"transformer.layers.24.attention.dense.bias": "pytorch_model-00002-of-00002.bin",
|
231 |
-
"transformer.layers.24.attention.dense.weight": "pytorch_model-00002-of-00002.bin",
|
232 |
-
"transformer.layers.24.attention.query_key_value.bias": "pytorch_model-00002-of-00002.bin",
|
233 |
-
"transformer.layers.24.attention.query_key_value.weight": "pytorch_model-00002-of-00002.bin",
|
234 |
-
"transformer.layers.24.attention.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
|
235 |
-
"transformer.layers.24.input_layernorm.bias": "pytorch_model-00002-of-00002.bin",
|
236 |
-
"transformer.layers.24.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
237 |
-
"transformer.layers.24.mlp.dense_4h_to_h.bias": "pytorch_model-00002-of-00002.bin",
|
238 |
-
"transformer.layers.24.mlp.dense_4h_to_h.weight": "pytorch_model-00002-of-00002.bin",
|
239 |
-
"transformer.layers.24.mlp.dense_h_to_4h.bias": "pytorch_model-00002-of-00002.bin",
|
240 |
-
"transformer.layers.24.mlp.dense_h_to_4h.weight": "pytorch_model-00002-of-00002.bin",
|
241 |
-
"transformer.layers.24.post_attention_layernorm.bias": "pytorch_model-00002-of-00002.bin",
|
242 |
-
"transformer.layers.24.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
243 |
-
"transformer.layers.25.attention.dense.bias": "pytorch_model-00002-of-00002.bin",
|
244 |
-
"transformer.layers.25.attention.dense.weight": "pytorch_model-00002-of-00002.bin",
|
245 |
-
"transformer.layers.25.attention.query_key_value.bias": "pytorch_model-00002-of-00002.bin",
|
246 |
-
"transformer.layers.25.attention.query_key_value.weight": "pytorch_model-00002-of-00002.bin",
|
247 |
-
"transformer.layers.25.attention.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
|
248 |
-
"transformer.layers.25.input_layernorm.bias": "pytorch_model-00002-of-00002.bin",
|
249 |
-
"transformer.layers.25.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
250 |
-
"transformer.layers.25.mlp.dense_4h_to_h.bias": "pytorch_model-00002-of-00002.bin",
|
251 |
-
"transformer.layers.25.mlp.dense_4h_to_h.weight": "pytorch_model-00002-of-00002.bin",
|
252 |
-
"transformer.layers.25.mlp.dense_h_to_4h.bias": "pytorch_model-00002-of-00002.bin",
|
253 |
-
"transformer.layers.25.mlp.dense_h_to_4h.weight": "pytorch_model-00002-of-00002.bin",
|
254 |
-
"transformer.layers.25.post_attention_layernorm.bias": "pytorch_model-00002-of-00002.bin",
|
255 |
-
"transformer.layers.25.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
256 |
-
"transformer.layers.26.attention.dense.bias": "pytorch_model-00002-of-00002.bin",
|
257 |
-
"transformer.layers.26.attention.dense.weight": "pytorch_model-00002-of-00002.bin",
|
258 |
-
"transformer.layers.26.attention.query_key_value.bias": "pytorch_model-00002-of-00002.bin",
|
259 |
-
"transformer.layers.26.attention.query_key_value.weight": "pytorch_model-00002-of-00002.bin",
|
260 |
-
"transformer.layers.26.attention.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
|
261 |
-
"transformer.layers.26.input_layernorm.bias": "pytorch_model-00002-of-00002.bin",
|
262 |
-
"transformer.layers.26.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
263 |
-
"transformer.layers.26.mlp.dense_4h_to_h.bias": "pytorch_model-00002-of-00002.bin",
|
264 |
-
"transformer.layers.26.mlp.dense_4h_to_h.weight": "pytorch_model-00002-of-00002.bin",
|
265 |
-
"transformer.layers.26.mlp.dense_h_to_4h.bias": "pytorch_model-00002-of-00002.bin",
|
266 |
-
"transformer.layers.26.mlp.dense_h_to_4h.weight": "pytorch_model-00002-of-00002.bin",
|
267 |
-
"transformer.layers.26.post_attention_layernorm.bias": "pytorch_model-00002-of-00002.bin",
|
268 |
-
"transformer.layers.26.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
269 |
-
"transformer.layers.27.attention.dense.bias": "pytorch_model-00002-of-00002.bin",
|
270 |
-
"transformer.layers.27.attention.dense.weight": "pytorch_model-00002-of-00002.bin",
|
271 |
-
"transformer.layers.27.attention.query_key_value.bias": "pytorch_model-00002-of-00002.bin",
|
272 |
-
"transformer.layers.27.attention.query_key_value.weight": "pytorch_model-00002-of-00002.bin",
|
273 |
-
"transformer.layers.27.attention.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
|
274 |
-
"transformer.layers.27.input_layernorm.bias": "pytorch_model-00002-of-00002.bin",
|
275 |
-
"transformer.layers.27.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
276 |
-
"transformer.layers.27.mlp.dense_4h_to_h.bias": "pytorch_model-00002-of-00002.bin",
|
277 |
-
"transformer.layers.27.mlp.dense_4h_to_h.weight": "pytorch_model-00002-of-00002.bin",
|
278 |
-
"transformer.layers.27.mlp.dense_h_to_4h.bias": "pytorch_model-00002-of-00002.bin",
|
279 |
-
"transformer.layers.27.mlp.dense_h_to_4h.weight": "pytorch_model-00002-of-00002.bin",
|
280 |
-
"transformer.layers.27.post_attention_layernorm.bias": "pytorch_model-00002-of-00002.bin",
|
281 |
-
"transformer.layers.27.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
282 |
-
"transformer.layers.3.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
|
283 |
-
"transformer.layers.3.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
|
284 |
-
"transformer.layers.3.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
|
285 |
-
"transformer.layers.3.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
|
286 |
-
"transformer.layers.3.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
287 |
-
"transformer.layers.3.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
|
288 |
-
"transformer.layers.3.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
289 |
-
"transformer.layers.3.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
|
290 |
-
"transformer.layers.3.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
|
291 |
-
"transformer.layers.3.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
|
292 |
-
"transformer.layers.3.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
|
293 |
-
"transformer.layers.3.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
|
294 |
-
"transformer.layers.3.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
295 |
-
"transformer.layers.4.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
|
296 |
-
"transformer.layers.4.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
|
297 |
-
"transformer.layers.4.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
|
298 |
-
"transformer.layers.4.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
|
299 |
-
"transformer.layers.4.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
300 |
-
"transformer.layers.4.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
|
301 |
-
"transformer.layers.4.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
302 |
-
"transformer.layers.4.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
|
303 |
-
"transformer.layers.4.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
|
304 |
-
"transformer.layers.4.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
|
305 |
-
"transformer.layers.4.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
|
306 |
-
"transformer.layers.4.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
|
307 |
-
"transformer.layers.4.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
308 |
-
"transformer.layers.5.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
|
309 |
-
"transformer.layers.5.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
|
310 |
-
"transformer.layers.5.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
|
311 |
-
"transformer.layers.5.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
|
312 |
-
"transformer.layers.5.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
313 |
-
"transformer.layers.5.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
|
314 |
-
"transformer.layers.5.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
315 |
-
"transformer.layers.5.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
|
316 |
-
"transformer.layers.5.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
|
317 |
-
"transformer.layers.5.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
|
318 |
-
"transformer.layers.5.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
|
319 |
-
"transformer.layers.5.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
|
320 |
-
"transformer.layers.5.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
321 |
-
"transformer.layers.6.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
|
322 |
-
"transformer.layers.6.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
|
323 |
-
"transformer.layers.6.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
|
324 |
-
"transformer.layers.6.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
|
325 |
-
"transformer.layers.6.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
326 |
-
"transformer.layers.6.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
|
327 |
-
"transformer.layers.6.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
328 |
-
"transformer.layers.6.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
|
329 |
-
"transformer.layers.6.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
|
330 |
-
"transformer.layers.6.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
|
331 |
-
"transformer.layers.6.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
|
332 |
-
"transformer.layers.6.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
|
333 |
-
"transformer.layers.6.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
334 |
-
"transformer.layers.7.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
|
335 |
-
"transformer.layers.7.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
|
336 |
-
"transformer.layers.7.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
|
337 |
-
"transformer.layers.7.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
|
338 |
-
"transformer.layers.7.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
339 |
-
"transformer.layers.7.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
|
340 |
-
"transformer.layers.7.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
341 |
-
"transformer.layers.7.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
|
342 |
-
"transformer.layers.7.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
|
343 |
-
"transformer.layers.7.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
|
344 |
-
"transformer.layers.7.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
|
345 |
-
"transformer.layers.7.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
|
346 |
-
"transformer.layers.7.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
347 |
-
"transformer.layers.8.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
|
348 |
-
"transformer.layers.8.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
|
349 |
-
"transformer.layers.8.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
|
350 |
-
"transformer.layers.8.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
|
351 |
-
"transformer.layers.8.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
352 |
-
"transformer.layers.8.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
|
353 |
-
"transformer.layers.8.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
354 |
-
"transformer.layers.8.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
|
355 |
-
"transformer.layers.8.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
|
356 |
-
"transformer.layers.8.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
|
357 |
-
"transformer.layers.8.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
|
358 |
-
"transformer.layers.8.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
|
359 |
-
"transformer.layers.8.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
360 |
-
"transformer.layers.9.attention.dense.bias": "pytorch_model-00001-of-00002.bin",
|
361 |
-
"transformer.layers.9.attention.dense.weight": "pytorch_model-00001-of-00002.bin",
|
362 |
-
"transformer.layers.9.attention.query_key_value.bias": "pytorch_model-00001-of-00002.bin",
|
363 |
-
"transformer.layers.9.attention.query_key_value.weight": "pytorch_model-00001-of-00002.bin",
|
364 |
-
"transformer.layers.9.attention.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
365 |
-
"transformer.layers.9.input_layernorm.bias": "pytorch_model-00001-of-00002.bin",
|
366 |
-
"transformer.layers.9.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
367 |
-
"transformer.layers.9.mlp.dense_4h_to_h.bias": "pytorch_model-00001-of-00002.bin",
|
368 |
-
"transformer.layers.9.mlp.dense_4h_to_h.weight": "pytorch_model-00001-of-00002.bin",
|
369 |
-
"transformer.layers.9.mlp.dense_h_to_4h.bias": "pytorch_model-00001-of-00002.bin",
|
370 |
-
"transformer.layers.9.mlp.dense_h_to_4h.weight": "pytorch_model-00001-of-00002.bin",
|
371 |
-
"transformer.layers.9.post_attention_layernorm.bias": "pytorch_model-00001-of-00002.bin",
|
372 |
-
"transformer.layers.9.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
373 |
-
"transformer.word_embeddings.weight": "pytorch_model-00001-of-00002.bin"
|
374 |
-
}
|
375 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
quantization.py
DELETED
@@ -1,201 +0,0 @@
|
|
1 |
-
from torch.nn import Linear
|
2 |
-
from torch.nn.parameter import Parameter
|
3 |
-
|
4 |
-
import bz2
|
5 |
-
import torch
|
6 |
-
import base64
|
7 |
-
import ctypes
|
8 |
-
from transformers.utils import logging
|
9 |
-
|
10 |
-
from typing import List
|
11 |
-
from functools import partial
|
12 |
-
|
13 |
-
logger = logging.get_logger(__name__)
|
14 |
-
|
15 |
-
try:
|
16 |
-
from cpm_kernels.kernels.base import LazyKernelCModule, KernelFunction, round_up
|
17 |
-
|
18 |
-
class Kernel:
|
19 |
-
def __init__(self, code: bytes, function_names: List[str]):
|
20 |
-
self.code = code
|
21 |
-
self._function_names = function_names
|
22 |
-
self._cmodule = LazyKernelCModule(self.code)
|
23 |
-
|
24 |
-
for name in self._function_names:
|
25 |
-
setattr(self, name, KernelFunction(self._cmodule, name))
|
26 |
-
|
27 |
-
quantization_code = "$QlpoOTFBWSZTWU9yuJUAQHN//////////f/n/8/n///n//bt4dTidcVx8X3V9FV/92/v4B7/AD5FBQFAAAChSgKpFCFAFVSigUAAAEKhSgUUqgFBKigqVREQAABQBQIANDTTIGI00BkZBkNGE0A0BkBkGQGRkaNAaAGQNBoGgDIAAYIGTI0DQAQAaGmmQMRpoDIyDIaMJoBoDIDIMgMjI0aA0AMgaDQNAGQAAwQMmRoGgAgA0NNMgYjTQGRkGQ0YTQDQGQGQZAZGRo0BoAZA0GgaAMgABggZMjQNABABoaaZAxGmgMjIMhowmgGgMgMgyAyMjRoDQAyBoNA0AZAADBAyZGgaAAmqU1NEgJqnptU/Sn4jRR6J6epk2pqb1Q/SgAPUGgyNNGjQ2SBpoAZAAGg0NB6mgDIAAAAA2oaApSREBNAARhGiYEaEwU8pvImlP0k2aam1GaGqbFNM1MHpTwmkepmyU9R6nqPKekHqNNPUxNGhp6n6p6QaZ6o9TG1GMqcoV9ly6nRanHlq6zPNbnGZNi6HSug+2nPiZ13XcnFYZW+45W11CumhzYhchOJ2GLLV1OBjBjGf4TptOddTSOcVxhqYZMYwZXZZY00zI1paX5X9J+b+f4e+x43RXSxXPOdquiGpduatGyXneN696M9t4HU2eR5XX/kPhP261NTx3JO1Ow7LyuDmeo9a7d351T1ZxnvnrvYnrXv/hXxPCeuYx2XsNmO003eg9J3Z6U7b23meJ4ri01OdzTk9BNO96brz+qT5nuvvH3ds/G+m/JcG/F2XYuhXlvO+jP7U3XgrzPN/lr8Sf1n6j4j7jZs+s/T0tNaNNYzTs12rxjwztHlnire3Nzc3N1wuBwOBwXBvZfoHpD7rFmR99V5vj3aXza3xdBbXMalubTg/jIv5dfAi54Pdc75j4z412n3Npj3Ld/ENm7a3b/Cod6h/ret1/5vn/C+l+gdslMvgPSLJ8d8q+U66fevYn/tW1chleEtNTGlcHCbLRlq0tHzF5tsbbZZfHjjLgZu42XCuC3NrdjTasZGNzgxPIrGqp7r3p7L2p5XjnpPSmTd5XtzqnB6U87zzg1Ol0zd0zsLszxR6lkxp35u6/teL0L0W922cR7Lu1lpL9CsHirzuM2T+BgsyViT6LHcm0/Vr6U/7LGGyJeqTEjt0PHWhF5mCT7R9mtlDwriYv0Tyr/OxYt6qp5r0mPVT0608TqnqMZaarU2nFwrTzzlrs1ed7z1ux60wyr4ydCaTi3enW8x68x0zU7tXSlcmPSW1mGpWJMg4zmPC2lK96tp0OE80y4MfEvnZj8zGluR6b22ki1Ou9V2nCd9xovcPvcYMZYy0lvN60ScZ45vN6yeCeeXFb1lVjnnCar5fwXwE2bzJ4HI1XVPXfXZMm44GUsMpYsmLB65TuVdm0cl0b+i/wGNN66XjeV7zuPpHcnK/juhhjdfId5jMdE5nN0dGmmm2zZs2cexD5n9p/dY352XsvXHaZNWWsmmS1atjR452nYudzvqv2HMRyvNNnlMcDl3R2+yx2uVrBubTW9icHDVtbNXlZm7jma1rM4VurZZd2y6nUau7ZXZ7bVU+mnoOVxZGMrVmvX60605JwmzGZhhhjTWtaaaMaaGTGmNMZasY0iX8VMUl8eepaIrzGSpemWOQyZORk2bNpjUybMmxqYmknCGCFynutfksaZpjTNMaaatM0xsxcGR0sociNqxNSmhhR1ZJPbsn8qyF0t2qH6iYBclclalbtTTcHTDsPaX6rlnElph2Jyumumtynv2Kk8GI7rsvXbIcJgHJOSaSXnnGaI3m87RtVXJOZ/YtgdTE6Wpha6ZlE8ayXkef1fh602r2WwvfMXtMdLlkfnLFdYYwYso+bWqm7yJqHXZGw2nrS5ZanSYnWlxBxMF1V940K2wdrI7R6OYf7DGGamMmTSbRhlS45xmVOumF1EyPCmHrrN8wwZOOrdNtLeMtzFzDlWnfTBxMk2NaXIZHBYxYLD4w8yju0ao65Vz1OIXoS9dLanwCe1PWrYuWMqf1if1z2k2yYfKJ741PDgno1ZQ8DRqvUny3mNoWTzGO6m1DkrJI8JiR5cSd+vZdGOO8nrMoc5+NDUFsMSXaZJeNlMmGLtJsovOsUp7I9S5VojKxF6bTVEelXqlfJobQr3LozSh2Jk7VcrVMfhXqszGWMzNqGhqZY0OadxkyyMssKugZR0KNFXBHlqwmJgTE/BNVMk6ItJXZMR0H47GpXv/DMOvNkmVuaV1PRfEdxuqc7Hcd+ZV/zTLaRxWk0nl9CdCeM6mn5rstHIBcpiuwmUZXeq81DacHI2rmrZ5SuE5mOZd6LQrZg9mx32TprA8BMo5jKN6yLTCi3WzQaZSuhzTtM1fUTGVpG8Tw+KXI0tjEpiWxtLYynOlktSbVlaI5kxP8TDH8kx50xoxi5KcA4pcja8KWLRlO/Ks6q06ergnvm1ca3Tq8Uw7LTUsmWyctXPWmpitl/uvGcWTGXGuAXDfhqazGmjkxcJW5hMMMMpYsXl2TZYtVOddG3XCarUt6Ptq9CZXSNzyuRzqRZOjsxdBbFVz6OA5HI43r1jityVlVpVkxmOsyaYWE1NTGq1sOVh36mHMcxtSvcy70edG0ZGR3I1Go1GRlV7mWWo1G0ZGRqlvH40l7o4m5xMWLLLYyNjnqc8556mdPqLJ31n/1nWOncxzG1tizrHs/Z+d2vP/B/l8wdJ6rHUn2nbbDq4p6htFtYzMMMTaZis1K5GKzGNmxhmUx2DDlZ/qNnIx41xnaMfCZWYaZWtNLTNW8ND4Fw1MyZOCdM428suKG1ehW8TesOydg7J+YYcD4cYR+8dFK6M4E3HM9ZfRNNL+Sn6rsl4DsrDl2HpPCnfxjGXtbZtYys1ttlyJ4T+BvexjGWRjMszK4Jpc77D3GyuVD7q0+G8m9G+2+rGm7cOR2y7FdtY2XUYx/oNlfRYxhMYyYZkyyg55enna9Kt/FFi6GMMwYwdwxWgxGMLKYmUyGExTKMZkMFhkymKuh0NOBNnBu+23LdwDoZYYzGGMxtORaTU1pjTGWTTGGtMrNWUsyyTTLLG1qy2ZjbK2DBllWqxMtBMaYZQmcE7zvvRcTkclUwdkxTaSdyySt/7fpL+T1v516Ji97fwr5JbLu305zMn5+GMTTZ9F+y7ExwmGVfG44yxn3dLv6l5i+Wth1jCrDq21nW9LqvvDzz3Vf3LLH/O/32TJ/erx3bXftO4eF+G956D952K/An4NfvOpjFjExjevP/UmE0fIoZXx6/w6lX/no3D0bLt+ixjieBM6ksRd0yB4Lt2SwYNE+gd1detlZWUnpiZfGfFaK+4PyCa/v18V8X75pe9fLXzp7l3VjF76vWZmHwGz1IZNWT7b8yddJ4q5kyrVdfru6atWc7bVYztL9Jf4GXvT+Y8m9/YsXP6H018a8D4XVOqvfzqeR+6yZOD8dPv0+U7/q5Pl+2dNb0MjzGVH5p6MNQ7cOWvw62U9aHE8DprDek+McLyvDz+te+9Zhq5+YTruufMcWMabqysTmZVWjKPfnK0wyVcrsuhjZRdLkHNvD72b9abriOSGIxiLixMOoalNPXzy+wT/tf+U6HHONfsz+xe8ufHBdQWWGWLA9if0rsnmrxK5LvRZQeWsTCsrmOYy8VteVfuRfcVTtDLItLIsMYxZLdU/DbtSemxF6Z6Zo5WBXE4tFdCyVMMXMTEMZXVlS6Xec2T4e0tHsRcEuWshcJ2YsNF5rUx1E8ifCq6Z+ZP7qdCeu/aTwFd53l16/o0NOw6O3dLavP4Hbi4RdmuDk6DoYaninC0+o4uZjbJ7Rxeu0/FbuFg+q7DVS6fQe0rZ6NDGUNNU6DEqOaLTicKnYZMnBWruljQxoaS3dZhocDge0bSTyOvdAbG5hxe2xji7E/L55xX13wWNDi6HCekcFxfCPGxY0MXC+s7afWaMdDyjyr+o8Rudm/NabOZvdl274zH4f5XK9z6On1Pe/K5TdPAslg77BjuO6Y3eO7GqvOPG/stknp1leyvLL0Z7bl9I4noMvLkzytLhWYzrOZzLXCORe028rORzOg4N/L0HlMOQ3Pgmnbb6KczlabORpu980q37TBqRu0/p3PO6234Bl03Ynuz+9W7gnsEcmvYaYY3aMYY0wx3pYd+ujsXauWdaY5Xkbtl23fPzFHiDB/QMo0yFjBllYxTQYYyxkrwn7JufwJ/PfgJ+C83X69ni6zvXcnyXabv0ncbLwsceS+RNlyN2mnneJtX0ngYO0+e+0+UnA+Wch3ji8hj5an4h+i6XBySU4n+R0roVcbw5yvHrmr4Yw8Y7x6c+9POPYHI5HI5HI5HI5HGXGww4nE4nrVyOR8XeqPEO7PLOiukYa3Novk5hV4cdtYZLI93e+uxff2jRo0aNGjRo0aNG1bVtW1dy3m83m8+tQ5ZzHw3nObwOu8La9Rc1dtkdS8A3eTk823tnktXWlxN6Oixe06zrN70Isd9jiOgZFq9yfkPqP/SLhN2Myl8jDM43bl1nbcb4cO57jlh8Jow6pzXZdL4dyODTuuhu77FyO27DdwdRxmvO+O+3N2+BdqyTwLHVczDVY4UPE4O66/ZO2cx1LFzVdSXtF7G4HMbrauOHRw6c8FdZ5m9fHZHYZXfTlZquyynSyTTKke6vcffSD9pzPA/G7n7jxPmuhc1DHMynPMrGL6AdewYmwu5ko+UUyTwrMv27rPH1v1nGqd87+p6N6LU8k3NEng53xXyHS97+44OSg/sy/hn+Se6yfYNjW0/uTgP+PvWYzLMmjhcLB/gGpri6H83/84eUXWT6T9Hsv7785z/7z4icpW+zfXypuR7rx/gMdZb1/wC678pcs8/2a3mDitGHxl9mfPlll5MafWWqxk/eYuTDgcNMzDGWLWvsuglNxs53GtN6uWpktlW1tZZYcuinMMWmnNnJydze3b2Y1McBxrBkXw799izLMZZYyy0TkbsGM4p03S2uVu5s/XXUdSdec6smVxZYYGpVmT8A+8ajuEyV5FatkvVru2x6uxGXXbH4A+jvgP4GMYy3iPLXzq/6z65+E005ey+cwMZD3fZcqc6xpjTFjQ0P3U+e++cPYmTIwj0nrK5NPTfl3WvpfLtXDcb2HQMudYOxFXQBor4L4T6vrOauFctYXJQ++NUWmJe5bmx1jDiZS1dTqWxo4GR8jm3fttpmPHppk9PEyv4/y8/sO07XacOmcqc0x2Vi9BvNJvN5oW8x4mOsydpidRxMYJPx06m1bqPzq9KtK8sxXNXFodD/+MYYaJTLwOhc9brCsV18oOR1i4tXChyTkq4lf4y1Ke+9axjDHqs1mfBbMXuP4Hzi+X7t8vzv7bHerrUPgPCxhjre4fXdfLNtNM+Jd+Zdh8xd8wP87uNPoPgv4W7/5P2BuxfsMabNnMnza+54Pdi5U671GPZY8CehX8Voeoo7FHpkeEc6715FwHZrIrUrHaviPUbPZHND+IhczrP6FcYvhOZ0Di/ETt0OI+YwNWR9r7tpf6WDeZKZDB1+z2IthOl1mPyb5FluvEx9h9d0NnM0Y1XPFkWIsk1WotJ0PBMmkvjvQTd0e71tfeV+8r8lQ/tpzpsmxJ+InrI/dj2UajUajVTUajatRqNRtGo1Go1Go4wjeMpZFMVV9CHbofPraLsJ3JpWV2XOoanCuFky4y3PPNxucK2uKC1Lbdb1eo+m5XomN6HfeZsabHLHRX/K+offtNGGmHWctcVcG44MdSqsOLY9VzX+Zxfxn2HPdWTpzWvkrtJ8M5zorrKcquRytJ5N5DZmcaW02l76nWO+BqPXm1A2Ry/0q71dH/mqrqeFjkYxjEXtsX8qubTk67rGycyqsdm4tZx5D6D5hhi0waaWmiaMP81Yjii5qxPlPuU/GfTL1Y5E6Jyfiq63qTa39A4J0sOGDgO9WF9bOXl0XfPRbsY2bPNKPy1YrFYrFYmRhhlTIyMjJWJYZHXuCXI8OoXsvfljGLFicNifpp2XunoPiG1wtx3p1Tah+/DD66OnVtVXP9rKbVxOnL0tR/rHtqB5UDErUVcl11D4qqvjpOcxX7armUNJB3LpW6bxVvD08e8h3odKKvyCFZBdSh2FVcST9xV3n3T8t1j7Kr9qgrqXg+13Pt5U7JCvFXVIV1YG5lRhkVYZJYYDDD4KOIMoHCp26WS8GB7uBh2zIdgq/PKyInjV2STShuoapUdCpX1yTwqq/z1VvET7Kh5nVPkO8YyxjLt2MaaMmWTLQvx3qnzltnXW0p2jxgbEtSny/Osv8Y9pLMXYoHVPAhkVdWVeODhR6q9/Sxe2liwwZWMVvFXfRkeIDxAePUPIrdJ4ey6yquzH+PD/bUOWAu05qVHtFd8rrKHSoeNIOUqrYr3FXyToqfYJgwmJdKpXXOwYYegNNGMzfZPp/t3t/DVs4zjNTN61rRqaWaa4NYbRjTa0tWwy2Y2tGN8ZO8ofNKq4j9SL7I+cSm4/6ovLV5HNXLI0jJidwrtk6ynCaP6Z++GjRlWS3tLeW129Mi9evxU9mtz6s5J3Z7M2ngTgnKvmpomxpaLCzPfmx0JWE+m3NLDDGOX47RctdYYNK5jakdqLkRlI39n590T5zctGSwwZZDJj6kW8XSi6ot2MmWWJ0DUT3nuvebBudScjZ79g8cWJ8av0k+/bE5WKd5MdbFpbDVMxu1DVMmtNZGJvq1mtRbn6M+g/kP0FwDwr7quZs7xosNGpbscyxhhd9TyJyFwbLcxlTasg75vW7TsV5K7ji44XPMMrdoj+Y3rT0Hie62nlYV/pwczzOmdLqLhYkzGMzCZWGMQzGMSsZYY6Di1t4nlJ+Em63mJxrVLxPbYxNEdgc1dU2iOKyoYYWjNrEeHTYybVk0atSa7ehuwsWMWTqn1TrnS6hYsi71d1+s+k+ic70e20fzE/VaTdxT9ZtU4GIXdeNx3X77guYYfpHeTQjaMX6brOu4OY4K7Y2d9mbHarI5ox3p4GpJ2Vd/Tst60f7j999pppjR+Q/Qf8J/VaORs3cji7FfFuN61+ui9s8hix1OCh5KGVV23BPXvZfz3CLyHpix+exi8z/KnCnosY2eunor+cxyPO/xJ0vKey9OvE9VjqaYu0x3Z3jd6o2b1T12D+F8l232lwaaacD5LE8LBxu7WTlbWraWpew8Xexjel3E+wWD4APITdNqR8F3R3T0lunCQ4GaE9R37DxeCYfcHi4xci5ovKfxVs55y2hf+65E/Xdp6jR5nrebTmi5incpkyOjs50JvrZwstbbW6kfuuQw+2mykf/EXNFzxfKTrxew929TR6bWnGL//F3JFOFCQT3K4lQ"
|
28 |
-
|
29 |
-
kernels = Kernel(
|
30 |
-
bz2.decompress(base64.b64decode(quantization_code)),
|
31 |
-
[
|
32 |
-
"int4WeightCompression",
|
33 |
-
"int4WeightExtractionFloat",
|
34 |
-
"int4WeightExtractionHalf",
|
35 |
-
"int8WeightExtractionFloat",
|
36 |
-
"int8WeightExtractionHalf",
|
37 |
-
],
|
38 |
-
)
|
39 |
-
except Exception as exception:
|
40 |
-
kernels = None
|
41 |
-
logger.warning("Failed to load cpm_kernels:" + str(exception))
|
42 |
-
|
43 |
-
|
44 |
-
class W8A16Linear(torch.autograd.Function):
|
45 |
-
@staticmethod
|
46 |
-
def forward(ctx, inp: torch.Tensor, quant_w: torch.Tensor, scale_w: torch.Tensor, weight_bit_width):
|
47 |
-
ctx.inp_shape = inp.size()
|
48 |
-
ctx.weight_bit_width = weight_bit_width
|
49 |
-
out_features = quant_w.size(0)
|
50 |
-
inp = inp.contiguous().view(-1, inp.size(-1))
|
51 |
-
weight = extract_weight_to_half(quant_w, scale_w, weight_bit_width)
|
52 |
-
ctx.weight_shape = weight.size()
|
53 |
-
output = inp.mm(weight.t())
|
54 |
-
ctx.save_for_backward(inp, quant_w, scale_w)
|
55 |
-
return output.view(*(ctx.inp_shape[:-1] + (out_features,)))
|
56 |
-
|
57 |
-
@staticmethod
|
58 |
-
def backward(ctx, grad_output: torch.Tensor):
|
59 |
-
inp, quant_w, scale_w = ctx.saved_tensors
|
60 |
-
weight = extract_weight_to_half(quant_w, scale_w, ctx.weight_bit_width)
|
61 |
-
grad_output = grad_output.contiguous().view(-1, weight.size(0))
|
62 |
-
grad_input = grad_output.mm(weight)
|
63 |
-
grad_weight = grad_output.t().mm(inp)
|
64 |
-
return grad_input.view(ctx.inp_shape), grad_weight.view(ctx.weight_shape), None, None
|
65 |
-
|
66 |
-
|
67 |
-
def compress_int4_weight(weight: torch.Tensor): # (n, m)
|
68 |
-
with torch.cuda.device(weight.device):
|
69 |
-
n, m = weight.size(0), weight.size(1)
|
70 |
-
assert m % 2 == 0
|
71 |
-
m = m // 2
|
72 |
-
out = torch.empty(n, m, dtype=torch.int8, device="cuda")
|
73 |
-
stream = torch.cuda.current_stream()
|
74 |
-
|
75 |
-
gridDim = (n, 1, 1)
|
76 |
-
blockDim = (min(round_up(m, 32), 1024), 1, 1)
|
77 |
-
|
78 |
-
kernels.int4WeightCompression(
|
79 |
-
gridDim,
|
80 |
-
blockDim,
|
81 |
-
0,
|
82 |
-
stream,
|
83 |
-
[ctypes.c_void_p(weight.data_ptr()), ctypes.c_void_p(out.data_ptr()), ctypes.c_int32(n), ctypes.c_int32(m)],
|
84 |
-
)
|
85 |
-
return out
|
86 |
-
|
87 |
-
|
88 |
-
def extract_weight_to_half(weight: torch.Tensor, scale_list: torch.Tensor, source_bit_width: int):
|
89 |
-
if source_bit_width == 8:
|
90 |
-
func = kernels.int8WeightExtractionHalf
|
91 |
-
elif source_bit_width == 4:
|
92 |
-
func = kernels.int4WeightExtractionHalf
|
93 |
-
else:
|
94 |
-
assert False, "Unsupported bit-width"
|
95 |
-
|
96 |
-
with torch.cuda.device(weight.device):
|
97 |
-
n, m = weight.size(0), weight.size(1)
|
98 |
-
out = torch.empty(n, m * (8 // source_bit_width), dtype=torch.half, device="cuda")
|
99 |
-
stream = torch.cuda.current_stream()
|
100 |
-
|
101 |
-
gridDim = (n, 1, 1)
|
102 |
-
blockDim = (min(round_up(m, 32), 1024), 1, 1)
|
103 |
-
|
104 |
-
func(
|
105 |
-
gridDim,
|
106 |
-
blockDim,
|
107 |
-
0,
|
108 |
-
stream,
|
109 |
-
[
|
110 |
-
ctypes.c_void_p(weight.data_ptr()),
|
111 |
-
ctypes.c_void_p(scale_list.data_ptr()),
|
112 |
-
ctypes.c_void_p(out.data_ptr()),
|
113 |
-
ctypes.c_int32(n),
|
114 |
-
ctypes.c_int32(m),
|
115 |
-
],
|
116 |
-
)
|
117 |
-
return out
|
118 |
-
|
119 |
-
|
120 |
-
class QuantizedLinear(Linear):
|
121 |
-
def __init__(self, weight_bit_width: int, weight_tensor=None, bias_tensor=None, empty_init=False, *args, **kwargs):
|
122 |
-
super(QuantizedLinear, self).__init__(*args, **kwargs)
|
123 |
-
self.weight_bit_width = weight_bit_width
|
124 |
-
|
125 |
-
shape = self.weight.shape
|
126 |
-
del self.weight
|
127 |
-
|
128 |
-
if weight_tensor is None or empty_init:
|
129 |
-
self.weight = torch.empty(
|
130 |
-
shape[0], shape[1] * weight_bit_width // 8, dtype=torch.int8, device=kwargs["device"]
|
131 |
-
)
|
132 |
-
self.weight_scale = torch.empty(shape[0], dtype=kwargs["dtype"], device=kwargs["device"])
|
133 |
-
else:
|
134 |
-
self.weight_scale = (weight_tensor.abs().max(dim=-1).values / ((2 ** (weight_bit_width - 1)) - 1)).half()
|
135 |
-
self.weight = torch.round(weight_tensor / self.weight_scale[:, None]).to(torch.int8)
|
136 |
-
if weight_bit_width == 4:
|
137 |
-
self.weight = compress_int4_weight(self.weight)
|
138 |
-
|
139 |
-
self.weight = Parameter(self.weight.to(kwargs["device"]), requires_grad=False)
|
140 |
-
self.weight_scale = Parameter(self.weight_scale.to(kwargs["device"]), requires_grad=False)
|
141 |
-
if bias_tensor is not None:
|
142 |
-
self.bias = Parameter(bias_tensor.to(kwargs["device"]), requires_grad=False)
|
143 |
-
else:
|
144 |
-
self.bias = None
|
145 |
-
|
146 |
-
def forward(self, input):
|
147 |
-
output = W8A16Linear.apply(input, self.weight, self.weight_scale, self.weight_bit_width)
|
148 |
-
if self.bias is not None:
|
149 |
-
output = output + self.bias
|
150 |
-
return output
|
151 |
-
|
152 |
-
|
153 |
-
def quantize(model, weight_bit_width, empty_init=False, **kwargs):
|
154 |
-
"""Replace fp16 linear with quantized linear"""
|
155 |
-
|
156 |
-
for layer in model.layers:
|
157 |
-
layer.attention.query_key_value = QuantizedLinear(
|
158 |
-
weight_bit_width=weight_bit_width,
|
159 |
-
weight_tensor=layer.attention.query_key_value.weight.to(torch.cuda.current_device()),
|
160 |
-
bias_tensor=layer.attention.query_key_value.bias,
|
161 |
-
in_features=layer.attention.query_key_value.in_features,
|
162 |
-
out_features=layer.attention.query_key_value.out_features,
|
163 |
-
bias=True,
|
164 |
-
dtype=torch.half,
|
165 |
-
device=layer.attention.query_key_value.weight.device,
|
166 |
-
empty_init=empty_init
|
167 |
-
)
|
168 |
-
layer.attention.dense = QuantizedLinear(
|
169 |
-
weight_bit_width=weight_bit_width,
|
170 |
-
weight_tensor=layer.attention.dense.weight.to(torch.cuda.current_device()),
|
171 |
-
bias_tensor=layer.attention.dense.bias,
|
172 |
-
in_features=layer.attention.dense.in_features,
|
173 |
-
out_features=layer.attention.dense.out_features,
|
174 |
-
bias=True,
|
175 |
-
dtype=torch.half,
|
176 |
-
device=layer.attention.dense.weight.device,
|
177 |
-
empty_init=empty_init
|
178 |
-
)
|
179 |
-
layer.mlp.dense_h_to_4h = QuantizedLinear(
|
180 |
-
weight_bit_width=weight_bit_width,
|
181 |
-
weight_tensor=layer.mlp.dense_h_to_4h.weight.to(torch.cuda.current_device()),
|
182 |
-
bias_tensor=layer.mlp.dense_h_to_4h.bias,
|
183 |
-
in_features=layer.mlp.dense_h_to_4h.in_features,
|
184 |
-
out_features=layer.mlp.dense_h_to_4h.out_features,
|
185 |
-
bias=True,
|
186 |
-
dtype=torch.half,
|
187 |
-
device=layer.mlp.dense_h_to_4h.weight.device,
|
188 |
-
empty_init=empty_init
|
189 |
-
)
|
190 |
-
layer.mlp.dense_4h_to_h = QuantizedLinear(
|
191 |
-
weight_bit_width=weight_bit_width,
|
192 |
-
weight_tensor=layer.mlp.dense_4h_to_h.weight.to(torch.cuda.current_device()),
|
193 |
-
bias_tensor=layer.mlp.dense_4h_to_h.bias,
|
194 |
-
in_features=layer.mlp.dense_4h_to_h.in_features,
|
195 |
-
out_features=layer.mlp.dense_4h_to_h.out_features,
|
196 |
-
bias=True,
|
197 |
-
dtype=torch.half,
|
198 |
-
device=layer.mlp.dense_4h_to_h.weight.device,
|
199 |
-
empty_init=empty_init
|
200 |
-
)
|
201 |
-
return model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
rng_state_0.pth
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:e75c96f06b249e57a701db73ce821398e69672027a86d3a44063830602a29ab4
|
3 |
-
size 14583
|
|
|
|
|
|
|
|
rng_state_1.pth
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:6dae7f45b6bac644ac207a61f43cba6d4b919a4cac22022bbb02907914422f5d
|
3 |
-
size 14583
|
|
|
|
|
|
|
|
rng_state_2.pth
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:e53c770fe48635faad7fa341007d771781f1397cd47daab5b58f879ffb65f178
|
3 |
-
size 14583
|
|
|
|
|
|
|
|
rng_state_3.pth
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:68692af1001e65d02e07ac9974ccf4c332cfb23bc8f89566e1a908b1f2c4a1ed
|
3 |
-
size 14583
|
|
|
|
|
|
|
|
rng_state_4.pth
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:9e672460daa959a080f877d7c4d9b69e426aee58d68fadf7c7b1606bd41fb8b2
|
3 |
-
size 14583
|
|
|
|
|
|
|
|
rng_state_5.pth
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:f5c802d6db3aceebae672c04998fd328369189deed851c3d0535ae9327dbd586
|
3 |
-
size 14583
|
|
|
|
|
|
|
|
rng_state_6.pth
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:812c89bb64ec7378ed47cc6eab99147f0771a5315960b29e97b311b64542216d
|
3 |
-
size 14583
|
|
|
|
|
|
|
|
rng_state_7.pth
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:b125372e27c9d41b3d47a27d6dbb797aa6dc4d9224fa71a3adab0f45eb362eb5
|
3 |
-
size 14583
|
|
|
|
|
|
|
|
special_tokens_map.json
DELETED
@@ -1,7 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"bos_token": "<sop>",
|
3 |
-
"eos_token": "<eop>",
|
4 |
-
"mask_token": "[MASK]",
|
5 |
-
"pad_token": "<pad>",
|
6 |
-
"unk_token": "<unk>"
|
7 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
tokenization_chatglm.py
DELETED
@@ -1,430 +0,0 @@
|
|
1 |
-
"""Tokenization classes for ChatGLM."""
|
2 |
-
from typing import List, Optional, Union
|
3 |
-
import os
|
4 |
-
|
5 |
-
from transformers.tokenization_utils import PreTrainedTokenizer
|
6 |
-
from transformers.utils import logging, PaddingStrategy
|
7 |
-
from transformers.tokenization_utils_base import EncodedInput, BatchEncoding
|
8 |
-
from typing import Dict
|
9 |
-
import sentencepiece as spm
|
10 |
-
import numpy as np
|
11 |
-
|
12 |
-
logger = logging.get_logger(__name__)
|
13 |
-
|
14 |
-
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
|
15 |
-
"THUDM/chatglm-6b": 2048,
|
16 |
-
}
|
17 |
-
|
18 |
-
|
19 |
-
class TextTokenizer:
|
20 |
-
def __init__(self, model_path):
|
21 |
-
self.sp = spm.SentencePieceProcessor()
|
22 |
-
self.sp.Load(model_path)
|
23 |
-
self.num_tokens = self.sp.vocab_size()
|
24 |
-
|
25 |
-
def encode(self, text):
|
26 |
-
return self.sp.EncodeAsIds(text)
|
27 |
-
|
28 |
-
def decode(self, ids: List[int]):
|
29 |
-
return self.sp.DecodeIds(ids)
|
30 |
-
|
31 |
-
def tokenize(self, text):
|
32 |
-
return self.sp.EncodeAsPieces(text)
|
33 |
-
|
34 |
-
def convert_tokens_to_ids(self, tokens):
|
35 |
-
return [self.sp.PieceToId(token) for token in tokens]
|
36 |
-
|
37 |
-
def convert_token_to_id(self, token):
|
38 |
-
return self.sp.PieceToId(token)
|
39 |
-
|
40 |
-
def convert_id_to_token(self, idx):
|
41 |
-
return self.sp.IdToPiece(idx)
|
42 |
-
|
43 |
-
def __len__(self):
|
44 |
-
return self.num_tokens
|
45 |
-
|
46 |
-
|
47 |
-
class SPTokenizer:
|
48 |
-
def __init__(
|
49 |
-
self,
|
50 |
-
vocab_file,
|
51 |
-
num_image_tokens=20000,
|
52 |
-
max_blank_length=80,
|
53 |
-
byte_fallback=True,
|
54 |
-
):
|
55 |
-
assert vocab_file is not None
|
56 |
-
self.vocab_file = vocab_file
|
57 |
-
self.num_image_tokens = num_image_tokens
|
58 |
-
self.special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "<unused_0>", "<sop>", "<eop>", "<ENC>", "<dBLOCK>"]
|
59 |
-
self.max_blank_length = max_blank_length
|
60 |
-
self.byte_fallback = byte_fallback
|
61 |
-
self.text_tokenizer = TextTokenizer(vocab_file)
|
62 |
-
|
63 |
-
def _get_text_tokenizer(self):
|
64 |
-
return self.text_tokenizer
|
65 |
-
|
66 |
-
@staticmethod
|
67 |
-
def get_blank_token(length: int):
|
68 |
-
assert length >= 2
|
69 |
-
return f"<|blank_{length}|>"
|
70 |
-
|
71 |
-
@staticmethod
|
72 |
-
def get_tab_token():
|
73 |
-
return f"<|tab|>"
|
74 |
-
|
75 |
-
@property
|
76 |
-
def num_text_tokens(self):
|
77 |
-
return self.text_tokenizer.num_tokens
|
78 |
-
|
79 |
-
@property
|
80 |
-
def num_tokens(self):
|
81 |
-
return self.num_image_tokens + self.num_text_tokens
|
82 |
-
|
83 |
-
@staticmethod
|
84 |
-
def _encode_whitespaces(text: str, max_len: int = 80):
|
85 |
-
text = text.replace("\t", SPTokenizer.get_tab_token())
|
86 |
-
for i in range(max_len, 1, -1):
|
87 |
-
text = text.replace(" " * i, SPTokenizer.get_blank_token(i))
|
88 |
-
return text
|
89 |
-
|
90 |
-
def _preprocess(self, text: str, linebreak=True, whitespaces=True):
|
91 |
-
if linebreak:
|
92 |
-
text = text.replace("\n", "<n>")
|
93 |
-
if whitespaces:
|
94 |
-
text = self._encode_whitespaces(text, max_len=self.max_blank_length)
|
95 |
-
return text
|
96 |
-
|
97 |
-
def encode(
|
98 |
-
self, text: str, linebreak=True, whitespaces=True, add_dummy_prefix=True
|
99 |
-
) -> List[int]:
|
100 |
-
"""
|
101 |
-
@param text: Text to encode.
|
102 |
-
@param linebreak: Whether to encode newline (\n) in text.
|
103 |
-
@param whitespaces: Whether to encode multiple whitespaces or tab in text, useful for source code encoding.
|
104 |
-
@param special_tokens: Whether to encode special token ([MASK], [gMASK], etc.) in text.
|
105 |
-
@param add_dummy_prefix: Whether to add dummy blank space in the beginning.
|
106 |
-
"""
|
107 |
-
text = self._preprocess(text, linebreak, whitespaces)
|
108 |
-
if not add_dummy_prefix:
|
109 |
-
text = "<n>" + text
|
110 |
-
tmp = self._get_text_tokenizer().encode(text)
|
111 |
-
tokens = [x + self.num_image_tokens for x in tmp]
|
112 |
-
return tokens if add_dummy_prefix else tokens[2:]
|
113 |
-
|
114 |
-
def decode(self, text_ids: List[int]) -> str:
|
115 |
-
ids = [int(_id) - self.num_image_tokens for _id in text_ids]
|
116 |
-
ids = [_id for _id in ids if _id >= 0]
|
117 |
-
text = self._get_text_tokenizer().decode(ids)
|
118 |
-
text = text.replace("<n>", "\n")
|
119 |
-
text = text.replace(SPTokenizer.get_tab_token(), "\t")
|
120 |
-
for i in range(2, self.max_blank_length + 1):
|
121 |
-
text = text.replace(self.get_blank_token(i), " " * i)
|
122 |
-
return text
|
123 |
-
|
124 |
-
def tokenize(
|
125 |
-
self, text: str, linebreak=True, whitespaces=True, add_dummy_prefix=True
|
126 |
-
) -> List[str]:
|
127 |
-
"""
|
128 |
-
@param text: Text to encode.
|
129 |
-
@param linebreak: Whether to encode newline (\n) in text.
|
130 |
-
@param whitespaces: Whether to encode multiple whitespaces or tab in text, useful for source code encoding.
|
131 |
-
@param special_tokens: Whether to encode special token ([MASK], [gMASK], etc.) in text.
|
132 |
-
@param add_dummy_prefix: Whether to add dummy blank space in the beginning.
|
133 |
-
"""
|
134 |
-
text = self._preprocess(text, linebreak, whitespaces)
|
135 |
-
if not add_dummy_prefix:
|
136 |
-
text = "<n>" + text
|
137 |
-
tokens = self._get_text_tokenizer().tokenize(text)
|
138 |
-
return tokens if add_dummy_prefix else tokens[2:]
|
139 |
-
|
140 |
-
def __getitem__(self, x: Union[int, str]):
|
141 |
-
if isinstance(x, int):
|
142 |
-
if x < self.num_image_tokens:
|
143 |
-
return "<image_{}>".format(x)
|
144 |
-
else:
|
145 |
-
return self.text_tokenizer.convert_id_to_token(x - self.num_image_tokens)
|
146 |
-
elif isinstance(x, str):
|
147 |
-
if x.startswith("<image_") and x.endswith(">") and x[7:-1].isdigit():
|
148 |
-
return int(x[7:-1])
|
149 |
-
else:
|
150 |
-
return self.text_tokenizer.convert_token_to_id(x) + self.num_image_tokens
|
151 |
-
else:
|
152 |
-
raise ValueError("The key should be str or int.")
|
153 |
-
|
154 |
-
|
155 |
-
class ChatGLMTokenizer(PreTrainedTokenizer):
|
156 |
-
"""
|
157 |
-
Construct a ChatGLM tokenizer. Based on byte-level Byte-Pair-Encoding.
|
158 |
-
|
159 |
-
Args:
|
160 |
-
vocab_file (`str`):
|
161 |
-
Path to the vocabulary file.
|
162 |
-
"""
|
163 |
-
|
164 |
-
vocab_files_names = {"vocab_file": "ice_text.model"}
|
165 |
-
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
|
166 |
-
model_input_names = ["input_ids", "attention_mask", "position_ids"]
|
167 |
-
|
168 |
-
def __init__(
|
169 |
-
self,
|
170 |
-
vocab_file,
|
171 |
-
do_lower_case=False,
|
172 |
-
remove_space=False,
|
173 |
-
bos_token='<sop>',
|
174 |
-
eos_token='<eop>',
|
175 |
-
end_token='</s>',
|
176 |
-
mask_token='[MASK]',
|
177 |
-
gmask_token='[gMASK]',
|
178 |
-
padding_side="left",
|
179 |
-
pad_token="<pad>",
|
180 |
-
unk_token="<unk>",
|
181 |
-
num_image_tokens=20000,
|
182 |
-
**kwargs
|
183 |
-
) -> None:
|
184 |
-
super().__init__(
|
185 |
-
do_lower_case=do_lower_case,
|
186 |
-
remove_space=remove_space,
|
187 |
-
padding_side=padding_side,
|
188 |
-
bos_token=bos_token,
|
189 |
-
eos_token=eos_token,
|
190 |
-
end_token=end_token,
|
191 |
-
mask_token=mask_token,
|
192 |
-
gmask_token=gmask_token,
|
193 |
-
pad_token=pad_token,
|
194 |
-
unk_token=unk_token,
|
195 |
-
num_image_tokens=num_image_tokens,
|
196 |
-
**kwargs
|
197 |
-
)
|
198 |
-
|
199 |
-
self.do_lower_case = do_lower_case
|
200 |
-
self.remove_space = remove_space
|
201 |
-
self.vocab_file = vocab_file
|
202 |
-
|
203 |
-
self.bos_token = bos_token
|
204 |
-
self.eos_token = eos_token
|
205 |
-
self.end_token = end_token
|
206 |
-
self.mask_token = mask_token
|
207 |
-
self.gmask_token = gmask_token
|
208 |
-
|
209 |
-
self.sp_tokenizer = SPTokenizer(vocab_file, num_image_tokens=num_image_tokens)
|
210 |
-
|
211 |
-
""" Initialisation """
|
212 |
-
|
213 |
-
@property
|
214 |
-
def gmask_token_id(self) -> Optional[int]:
|
215 |
-
if self.gmask_token is None:
|
216 |
-
return None
|
217 |
-
return self.convert_tokens_to_ids(self.gmask_token)
|
218 |
-
|
219 |
-
@property
|
220 |
-
def end_token_id(self) -> Optional[int]:
|
221 |
-
"""
|
222 |
-
`Optional[int]`: Id of the end of context token in the vocabulary. Returns `None` if the token has not been
|
223 |
-
set.
|
224 |
-
"""
|
225 |
-
if self.end_token is None:
|
226 |
-
return None
|
227 |
-
return self.convert_tokens_to_ids(self.end_token)
|
228 |
-
|
229 |
-
@property
|
230 |
-
def vocab_size(self):
|
231 |
-
""" Returns vocab size """
|
232 |
-
return self.sp_tokenizer.num_tokens
|
233 |
-
|
234 |
-
def get_vocab(self):
|
235 |
-
""" Returns vocab as a dict """
|
236 |
-
vocab = {self._convert_id_to_token(i): i for i in range(self.vocab_size)}
|
237 |
-
vocab.update(self.added_tokens_encoder)
|
238 |
-
return vocab
|
239 |
-
|
240 |
-
def preprocess_text(self, inputs):
|
241 |
-
if self.remove_space:
|
242 |
-
outputs = " ".join(inputs.strip().split())
|
243 |
-
else:
|
244 |
-
outputs = inputs
|
245 |
-
|
246 |
-
if self.do_lower_case:
|
247 |
-
outputs = outputs.lower()
|
248 |
-
|
249 |
-
return outputs
|
250 |
-
|
251 |
-
def _tokenize(self, text, **kwargs):
|
252 |
-
""" Returns a tokenized string. """
|
253 |
-
text = self.preprocess_text(text)
|
254 |
-
|
255 |
-
seq = self.sp_tokenizer.tokenize(text)
|
256 |
-
|
257 |
-
return seq
|
258 |
-
|
259 |
-
def _decode(
|
260 |
-
self,
|
261 |
-
token_ids: Union[int, List[int]],
|
262 |
-
skip_special_tokens: bool = False,
|
263 |
-
clean_up_tokenization_spaces: bool = True,
|
264 |
-
**kwargs
|
265 |
-
) -> str:
|
266 |
-
if isinstance(token_ids, int):
|
267 |
-
token_ids = [token_ids]
|
268 |
-
if len(token_ids) == 0:
|
269 |
-
return ""
|
270 |
-
if self.pad_token_id in token_ids: # remove pad
|
271 |
-
token_ids = list(filter((self.pad_token_id).__ne__, token_ids))
|
272 |
-
return self.sp_tokenizer.decode(token_ids)
|
273 |
-
|
274 |
-
def _convert_token_to_id(self, token):
|
275 |
-
""" Converts a token (str) in an id using the vocab. """
|
276 |
-
return self.sp_tokenizer[token]
|
277 |
-
|
278 |
-
def _convert_id_to_token(self, index):
|
279 |
-
"""Converts an index (integer) in a token (str) using the vocab."""
|
280 |
-
return self.sp_tokenizer[index]
|
281 |
-
|
282 |
-
def save_vocabulary(self, save_directory, filename_prefix=None):
|
283 |
-
"""
|
284 |
-
Save the vocabulary and special tokens file to a directory.
|
285 |
-
|
286 |
-
Args:
|
287 |
-
save_directory (`str`):
|
288 |
-
The directory in which to save the vocabulary.
|
289 |
-
filename_prefix (`str`, *optional*):
|
290 |
-
An optional prefix to add to the named of the saved files.
|
291 |
-
|
292 |
-
Returns:
|
293 |
-
`Tuple(str)`: Paths to the files saved.
|
294 |
-
"""
|
295 |
-
if os.path.isdir(save_directory):
|
296 |
-
vocab_file = os.path.join(
|
297 |
-
save_directory, self.vocab_files_names["vocab_file"]
|
298 |
-
)
|
299 |
-
else:
|
300 |
-
vocab_file = save_directory
|
301 |
-
|
302 |
-
with open(self.vocab_file, 'rb') as fin:
|
303 |
-
proto_str = fin.read()
|
304 |
-
|
305 |
-
with open(vocab_file, "wb") as writer:
|
306 |
-
writer.write(proto_str)
|
307 |
-
|
308 |
-
return (vocab_file,)
|
309 |
-
|
310 |
-
def build_inputs_with_special_tokens(
|
311 |
-
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
312 |
-
) -> List[int]:
|
313 |
-
"""
|
314 |
-
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
315 |
-
adding special tokens. A BERT sequence has the following format:
|
316 |
-
|
317 |
-
- single sequence: `[CLS] X [SEP]`
|
318 |
-
- pair of sequences: `[CLS] A [SEP] B [SEP]`
|
319 |
-
|
320 |
-
Args:
|
321 |
-
token_ids_0 (`List[int]`):
|
322 |
-
List of IDs to which the special tokens will be added.
|
323 |
-
token_ids_1 (`List[int]`, *optional*):
|
324 |
-
Optional second list of IDs for sequence pairs.
|
325 |
-
|
326 |
-
Returns:
|
327 |
-
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
|
328 |
-
"""
|
329 |
-
gmask_id = self.sp_tokenizer[self.gmask_token]
|
330 |
-
eos_id = self.sp_tokenizer[self.eos_token]
|
331 |
-
token_ids_0 = token_ids_0 + [gmask_id, self.sp_tokenizer[self.bos_token]]
|
332 |
-
if token_ids_1 is not None:
|
333 |
-
token_ids_0 = token_ids_0 + token_ids_1 + [eos_id]
|
334 |
-
return token_ids_0
|
335 |
-
|
336 |
-
def _pad(
|
337 |
-
self,
|
338 |
-
encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding],
|
339 |
-
max_length: Optional[int] = None,
|
340 |
-
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
|
341 |
-
pad_to_multiple_of: Optional[int] = None,
|
342 |
-
return_attention_mask: Optional[bool] = None,
|
343 |
-
) -> dict:
|
344 |
-
"""
|
345 |
-
Pad encoded inputs (on left/right and up to predefined length or max length in the batch)
|
346 |
-
|
347 |
-
Args:
|
348 |
-
encoded_inputs:
|
349 |
-
Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`).
|
350 |
-
max_length: maximum length of the returned list and optionally padding length (see below).
|
351 |
-
Will truncate by taking into account the special tokens.
|
352 |
-
padding_strategy: PaddingStrategy to use for padding.
|
353 |
-
|
354 |
-
- PaddingStrategy.LONGEST Pad to the longest sequence in the batch
|
355 |
-
- PaddingStrategy.MAX_LENGTH: Pad to the max length (default)
|
356 |
-
- PaddingStrategy.DO_NOT_PAD: Do not pad
|
357 |
-
The tokenizer padding sides are defined in self.padding_side:
|
358 |
-
|
359 |
-
- 'left': pads on the left of the sequences
|
360 |
-
- 'right': pads on the right of the sequences
|
361 |
-
pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value.
|
362 |
-
This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability
|
363 |
-
`>= 7.5` (Volta).
|
364 |
-
return_attention_mask:
|
365 |
-
(optional) Set to False to avoid returning attention mask (default: set to model specifics)
|
366 |
-
"""
|
367 |
-
# Load from model defaults
|
368 |
-
bos_token_id = self.sp_tokenizer[self.bos_token]
|
369 |
-
mask_token_id = self.sp_tokenizer[self.mask_token]
|
370 |
-
gmask_token_id = self.sp_tokenizer[self.gmask_token]
|
371 |
-
assert self.padding_side == "left"
|
372 |
-
|
373 |
-
required_input = encoded_inputs[self.model_input_names[0]]
|
374 |
-
seq_length = len(required_input)
|
375 |
-
|
376 |
-
if padding_strategy == PaddingStrategy.LONGEST:
|
377 |
-
max_length = len(required_input)
|
378 |
-
|
379 |
-
if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
|
380 |
-
max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
|
381 |
-
|
382 |
-
needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(required_input) != max_length
|
383 |
-
|
384 |
-
# Initialize attention mask if not present.
|
385 |
-
if max_length is not None:
|
386 |
-
if "attention_mask" not in encoded_inputs:
|
387 |
-
if bos_token_id in required_input:
|
388 |
-
context_length = required_input.index(bos_token_id)
|
389 |
-
else:
|
390 |
-
context_length = seq_length
|
391 |
-
attention_mask = np.ones((1, seq_length, seq_length))
|
392 |
-
attention_mask = np.tril(attention_mask)
|
393 |
-
attention_mask[:, :, :context_length] = 1
|
394 |
-
attention_mask = np.bool_(attention_mask < 0.5)
|
395 |
-
encoded_inputs["attention_mask"] = attention_mask
|
396 |
-
|
397 |
-
if "position_ids" not in encoded_inputs:
|
398 |
-
if bos_token_id in required_input:
|
399 |
-
context_length = required_input.index(bos_token_id)
|
400 |
-
else:
|
401 |
-
context_length = seq_length
|
402 |
-
position_ids = np.arange(seq_length, dtype=np.int64)
|
403 |
-
mask_token = mask_token_id if mask_token_id in required_input else gmask_token_id
|
404 |
-
if mask_token in required_input:
|
405 |
-
mask_position = required_input.index(mask_token)
|
406 |
-
position_ids[context_length:] = mask_position
|
407 |
-
block_position_ids = np.concatenate(
|
408 |
-
[np.zeros(context_length, dtype=np.int64),
|
409 |
-
np.arange(1, seq_length - context_length + 1, dtype=np.int64)])
|
410 |
-
encoded_inputs["position_ids"] = np.stack([position_ids, block_position_ids], axis=0)
|
411 |
-
|
412 |
-
if needs_to_be_padded:
|
413 |
-
difference = max_length - len(required_input)
|
414 |
-
|
415 |
-
if "attention_mask" in encoded_inputs:
|
416 |
-
encoded_inputs["attention_mask"] = np.pad(encoded_inputs["attention_mask"],
|
417 |
-
pad_width=[(0, 0), (difference, 0), (difference, 0)],
|
418 |
-
mode='constant', constant_values=True)
|
419 |
-
if "token_type_ids" in encoded_inputs:
|
420 |
-
encoded_inputs["token_type_ids"] = [self.pad_token_type_id] * difference + encoded_inputs[
|
421 |
-
"token_type_ids"
|
422 |
-
]
|
423 |
-
if "special_tokens_mask" in encoded_inputs:
|
424 |
-
encoded_inputs["special_tokens_mask"] = [1] * difference + encoded_inputs["special_tokens_mask"]
|
425 |
-
if "position_ids" in encoded_inputs:
|
426 |
-
encoded_inputs["position_ids"] = np.pad(encoded_inputs["position_ids"],
|
427 |
-
pad_width=[(0, 0), (difference, 0)])
|
428 |
-
encoded_inputs[self.model_input_names[0]] = [self.pad_token_id] * difference + required_input
|
429 |
-
|
430 |
-
return encoded_inputs
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
tokenizer_config.json
DELETED
@@ -1,22 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"auto_map": {
|
3 |
-
"AutoTokenizer": [
|
4 |
-
"tokenization_chatglm.ChatGLMTokenizer",
|
5 |
-
null
|
6 |
-
]
|
7 |
-
},
|
8 |
-
"bos_token": "<sop>",
|
9 |
-
"clean_up_tokenization_spaces": true,
|
10 |
-
"do_lower_case": false,
|
11 |
-
"end_token": "</s>",
|
12 |
-
"eos_token": "<eop>",
|
13 |
-
"gmask_token": "[gMASK]",
|
14 |
-
"mask_token": "[MASK]",
|
15 |
-
"model_max_length": 1000000000000000019884624838656,
|
16 |
-
"num_image_tokens": 0,
|
17 |
-
"pad_token": "<pad>",
|
18 |
-
"padding_side": "left",
|
19 |
-
"remove_space": false,
|
20 |
-
"tokenizer_class": "ChatGLMTokenizer",
|
21 |
-
"unk_token": "<unk>"
|
22 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
zero_to_fp32.py
DELETED
@@ -1,578 +0,0 @@
|
|
1 |
-
#!/usr/bin/env python
|
2 |
-
|
3 |
-
# Copyright (c) Microsoft Corporation.
|
4 |
-
# SPDX-License-Identifier: Apache-2.0
|
5 |
-
|
6 |
-
# DeepSpeed Team
|
7 |
-
|
8 |
-
# This script extracts fp32 consolidated weights from a zero 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
-
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
-
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
-
# application.
|
12 |
-
#
|
13 |
-
# example: python zero_to_fp32.py . pytorch_model.bin
|
14 |
-
|
15 |
-
import argparse
|
16 |
-
import torch
|
17 |
-
import glob
|
18 |
-
import math
|
19 |
-
import os
|
20 |
-
import re
|
21 |
-
from collections import OrderedDict
|
22 |
-
from dataclasses import dataclass
|
23 |
-
|
24 |
-
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
25 |
-
# DeepSpeed data structures it has to be available in the current python environment.
|
26 |
-
from deepspeed.utils import logger
|
27 |
-
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
28 |
-
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
29 |
-
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
30 |
-
|
31 |
-
|
32 |
-
@dataclass
|
33 |
-
class zero_model_state:
|
34 |
-
buffers: dict()
|
35 |
-
param_shapes: dict()
|
36 |
-
shared_params: list
|
37 |
-
ds_version: int
|
38 |
-
frozen_param_shapes: dict()
|
39 |
-
frozen_param_fragments: dict()
|
40 |
-
|
41 |
-
|
42 |
-
debug = 0
|
43 |
-
|
44 |
-
# load to cpu
|
45 |
-
device = torch.device('cpu')
|
46 |
-
|
47 |
-
|
48 |
-
def atoi(text):
|
49 |
-
return int(text) if text.isdigit() else text
|
50 |
-
|
51 |
-
|
52 |
-
def natural_keys(text):
|
53 |
-
'''
|
54 |
-
alist.sort(key=natural_keys) sorts in human order
|
55 |
-
http://nedbatchelder.com/blog/200712/human_sorting.html
|
56 |
-
(See Toothy's implementation in the comments)
|
57 |
-
'''
|
58 |
-
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
59 |
-
|
60 |
-
|
61 |
-
def get_model_state_file(checkpoint_dir, zero_stage):
|
62 |
-
if not os.path.isdir(checkpoint_dir):
|
63 |
-
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
64 |
-
|
65 |
-
# there should be only one file
|
66 |
-
if zero_stage == 2:
|
67 |
-
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
68 |
-
elif zero_stage == 3:
|
69 |
-
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
70 |
-
|
71 |
-
if not os.path.exists(file):
|
72 |
-
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
73 |
-
|
74 |
-
return file
|
75 |
-
|
76 |
-
|
77 |
-
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
78 |
-
# XXX: need to test that this simple glob rule works for multi-node setup too
|
79 |
-
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
80 |
-
|
81 |
-
if len(ckpt_files) == 0:
|
82 |
-
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
83 |
-
|
84 |
-
return ckpt_files
|
85 |
-
|
86 |
-
|
87 |
-
def get_optim_files(checkpoint_dir):
|
88 |
-
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
89 |
-
|
90 |
-
|
91 |
-
def get_model_state_files(checkpoint_dir):
|
92 |
-
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
93 |
-
|
94 |
-
|
95 |
-
def parse_model_states(files):
|
96 |
-
zero_model_states = []
|
97 |
-
for file in files:
|
98 |
-
state_dict = torch.load(file, map_location=device)
|
99 |
-
|
100 |
-
if BUFFER_NAMES not in state_dict:
|
101 |
-
raise ValueError(f"{file} is not a model state checkpoint")
|
102 |
-
buffer_names = state_dict[BUFFER_NAMES]
|
103 |
-
if debug:
|
104 |
-
print("Found buffers:", buffer_names)
|
105 |
-
|
106 |
-
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
107 |
-
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
108 |
-
param_shapes = state_dict[PARAM_SHAPES]
|
109 |
-
|
110 |
-
# collect parameters that are included in param_shapes
|
111 |
-
param_names = []
|
112 |
-
for s in param_shapes:
|
113 |
-
for name in s.keys():
|
114 |
-
param_names.append(name)
|
115 |
-
|
116 |
-
# update with frozen parameters
|
117 |
-
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
118 |
-
if frozen_param_shapes is not None:
|
119 |
-
if debug:
|
120 |
-
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
121 |
-
param_names += list(frozen_param_shapes.keys())
|
122 |
-
|
123 |
-
# handle shared params
|
124 |
-
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
125 |
-
|
126 |
-
ds_version = state_dict.get(DS_VERSION, None)
|
127 |
-
|
128 |
-
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
129 |
-
|
130 |
-
z_model_state = zero_model_state(buffers=buffers,
|
131 |
-
param_shapes=param_shapes,
|
132 |
-
shared_params=shared_params,
|
133 |
-
ds_version=ds_version,
|
134 |
-
frozen_param_shapes=frozen_param_shapes,
|
135 |
-
frozen_param_fragments=frozen_param_fragments)
|
136 |
-
zero_model_states.append(z_model_state)
|
137 |
-
|
138 |
-
return zero_model_states
|
139 |
-
|
140 |
-
|
141 |
-
def parse_optim_states(files, ds_checkpoint_dir):
|
142 |
-
|
143 |
-
total_files = len(files)
|
144 |
-
state_dicts = []
|
145 |
-
for f in files:
|
146 |
-
state_dicts.append(torch.load(f, map_location=device))
|
147 |
-
|
148 |
-
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
149 |
-
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
150 |
-
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
151 |
-
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
152 |
-
|
153 |
-
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
154 |
-
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
155 |
-
# use the max of the partition_count to get the dp world_size.
|
156 |
-
|
157 |
-
if type(world_size) is list:
|
158 |
-
world_size = max(world_size)
|
159 |
-
|
160 |
-
if world_size != total_files:
|
161 |
-
raise ValueError(
|
162 |
-
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
163 |
-
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
164 |
-
)
|
165 |
-
|
166 |
-
# the groups are named differently in each stage
|
167 |
-
if zero_stage == 2:
|
168 |
-
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
169 |
-
elif zero_stage == 3:
|
170 |
-
fp32_groups_key = FP32_FLAT_GROUPS
|
171 |
-
else:
|
172 |
-
raise ValueError(f"unknown zero stage {zero_stage}")
|
173 |
-
|
174 |
-
if zero_stage == 2:
|
175 |
-
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
176 |
-
elif zero_stage == 3:
|
177 |
-
# if there is more than one param group, there will be multiple flattened tensors - one
|
178 |
-
# flattened tensor per group - for simplicity merge them into a single tensor
|
179 |
-
#
|
180 |
-
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
181 |
-
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
182 |
-
|
183 |
-
fp32_flat_groups = [
|
184 |
-
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
185 |
-
]
|
186 |
-
|
187 |
-
return zero_stage, world_size, fp32_flat_groups
|
188 |
-
|
189 |
-
|
190 |
-
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
|
191 |
-
"""
|
192 |
-
Returns fp32 state_dict reconstructed from ds checkpoint
|
193 |
-
|
194 |
-
Args:
|
195 |
-
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
196 |
-
|
197 |
-
"""
|
198 |
-
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
199 |
-
|
200 |
-
optim_files = get_optim_files(ds_checkpoint_dir)
|
201 |
-
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
202 |
-
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
203 |
-
|
204 |
-
model_files = get_model_state_files(ds_checkpoint_dir)
|
205 |
-
|
206 |
-
zero_model_states = parse_model_states(model_files)
|
207 |
-
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
208 |
-
|
209 |
-
if zero_stage == 2:
|
210 |
-
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
211 |
-
elif zero_stage == 3:
|
212 |
-
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
213 |
-
|
214 |
-
|
215 |
-
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
216 |
-
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
217 |
-
return
|
218 |
-
|
219 |
-
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
220 |
-
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
221 |
-
|
222 |
-
if debug:
|
223 |
-
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
224 |
-
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
225 |
-
|
226 |
-
wanted_params = len(frozen_param_shapes)
|
227 |
-
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
228 |
-
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
229 |
-
print(f'Frozen params: Have {avail_numel} numels to process.')
|
230 |
-
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
231 |
-
|
232 |
-
total_params = 0
|
233 |
-
total_numel = 0
|
234 |
-
for name, shape in frozen_param_shapes.items():
|
235 |
-
total_params += 1
|
236 |
-
unpartitioned_numel = shape.numel()
|
237 |
-
total_numel += unpartitioned_numel
|
238 |
-
|
239 |
-
state_dict[name] = frozen_param_fragments[name]
|
240 |
-
|
241 |
-
if debug:
|
242 |
-
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
243 |
-
|
244 |
-
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
245 |
-
|
246 |
-
|
247 |
-
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
248 |
-
param_shapes = zero_model_states[0].param_shapes
|
249 |
-
|
250 |
-
# Reconstruction protocol:
|
251 |
-
#
|
252 |
-
# XXX: document this
|
253 |
-
|
254 |
-
if debug:
|
255 |
-
for i in range(world_size):
|
256 |
-
for j in range(len(fp32_flat_groups[0])):
|
257 |
-
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
258 |
-
|
259 |
-
# XXX: memory usage doubles here (zero2)
|
260 |
-
num_param_groups = len(fp32_flat_groups[0])
|
261 |
-
merged_single_partition_of_fp32_groups = []
|
262 |
-
for i in range(num_param_groups):
|
263 |
-
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
264 |
-
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
265 |
-
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
266 |
-
avail_numel = sum(
|
267 |
-
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
268 |
-
|
269 |
-
if debug:
|
270 |
-
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
271 |
-
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
272 |
-
# not asserting if there is a mismatch due to possible padding
|
273 |
-
print(f"Have {avail_numel} numels to process.")
|
274 |
-
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
275 |
-
|
276 |
-
# params
|
277 |
-
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
278 |
-
# out-of-core computing solution
|
279 |
-
total_numel = 0
|
280 |
-
total_params = 0
|
281 |
-
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
282 |
-
offset = 0
|
283 |
-
avail_numel = full_single_fp32_vector.numel()
|
284 |
-
for name, shape in shapes.items():
|
285 |
-
|
286 |
-
unpartitioned_numel = shape.numel()
|
287 |
-
total_numel += unpartitioned_numel
|
288 |
-
total_params += 1
|
289 |
-
|
290 |
-
if debug:
|
291 |
-
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
292 |
-
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
293 |
-
offset += unpartitioned_numel
|
294 |
-
|
295 |
-
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
296 |
-
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
297 |
-
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
298 |
-
# live optimizer object, so we are checking that the numbers are within the right range
|
299 |
-
align_to = 2 * world_size
|
300 |
-
|
301 |
-
def zero2_align(x):
|
302 |
-
return align_to * math.ceil(x / align_to)
|
303 |
-
|
304 |
-
if debug:
|
305 |
-
print(f"original offset={offset}, avail_numel={avail_numel}")
|
306 |
-
|
307 |
-
offset = zero2_align(offset)
|
308 |
-
avail_numel = zero2_align(avail_numel)
|
309 |
-
|
310 |
-
if debug:
|
311 |
-
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
312 |
-
|
313 |
-
# Sanity check
|
314 |
-
if offset != avail_numel:
|
315 |
-
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
316 |
-
|
317 |
-
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
318 |
-
|
319 |
-
|
320 |
-
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
321 |
-
state_dict = OrderedDict()
|
322 |
-
|
323 |
-
# buffers
|
324 |
-
buffers = zero_model_states[0].buffers
|
325 |
-
state_dict.update(buffers)
|
326 |
-
if debug:
|
327 |
-
print(f"added {len(buffers)} buffers")
|
328 |
-
|
329 |
-
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
330 |
-
|
331 |
-
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
332 |
-
|
333 |
-
# recover shared parameters
|
334 |
-
for pair in zero_model_states[0].shared_params:
|
335 |
-
if pair[1] in state_dict:
|
336 |
-
state_dict[pair[0]] = state_dict[pair[1]]
|
337 |
-
|
338 |
-
return state_dict
|
339 |
-
|
340 |
-
|
341 |
-
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
342 |
-
remainder = unpartitioned_numel % world_size
|
343 |
-
padding_numel = (world_size - remainder) if remainder else 0
|
344 |
-
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
345 |
-
return partitioned_numel, padding_numel
|
346 |
-
|
347 |
-
|
348 |
-
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
349 |
-
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
350 |
-
return
|
351 |
-
|
352 |
-
if debug:
|
353 |
-
for i in range(world_size):
|
354 |
-
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
355 |
-
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
356 |
-
|
357 |
-
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
358 |
-
wanted_params = len(frozen_param_shapes)
|
359 |
-
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
360 |
-
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
361 |
-
print(f'Frozen params: Have {avail_numel} numels to process.')
|
362 |
-
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
363 |
-
|
364 |
-
total_params = 0
|
365 |
-
total_numel = 0
|
366 |
-
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
367 |
-
total_params += 1
|
368 |
-
unpartitioned_numel = shape.numel()
|
369 |
-
total_numel += unpartitioned_numel
|
370 |
-
|
371 |
-
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
372 |
-
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
373 |
-
|
374 |
-
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
375 |
-
|
376 |
-
if debug:
|
377 |
-
print(
|
378 |
-
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
379 |
-
)
|
380 |
-
|
381 |
-
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
382 |
-
|
383 |
-
|
384 |
-
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
385 |
-
param_shapes = zero_model_states[0].param_shapes
|
386 |
-
avail_numel = fp32_flat_groups[0].numel() * world_size
|
387 |
-
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
388 |
-
# param, re-consolidating each param, while dealing with padding if any
|
389 |
-
|
390 |
-
# merge list of dicts, preserving order
|
391 |
-
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
392 |
-
|
393 |
-
if debug:
|
394 |
-
for i in range(world_size):
|
395 |
-
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
396 |
-
|
397 |
-
wanted_params = len(param_shapes)
|
398 |
-
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
399 |
-
# not asserting if there is a mismatch due to possible padding
|
400 |
-
avail_numel = fp32_flat_groups[0].numel() * world_size
|
401 |
-
print(f"Trainable params: Have {avail_numel} numels to process.")
|
402 |
-
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
403 |
-
|
404 |
-
# params
|
405 |
-
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
406 |
-
# out-of-core computing solution
|
407 |
-
offset = 0
|
408 |
-
total_numel = 0
|
409 |
-
total_params = 0
|
410 |
-
for name, shape in param_shapes.items():
|
411 |
-
|
412 |
-
unpartitioned_numel = shape.numel()
|
413 |
-
total_numel += unpartitioned_numel
|
414 |
-
total_params += 1
|
415 |
-
|
416 |
-
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
417 |
-
|
418 |
-
if debug:
|
419 |
-
print(
|
420 |
-
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
421 |
-
)
|
422 |
-
|
423 |
-
# XXX: memory usage doubles here
|
424 |
-
state_dict[name] = torch.cat(
|
425 |
-
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
426 |
-
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
427 |
-
offset += partitioned_numel
|
428 |
-
|
429 |
-
offset *= world_size
|
430 |
-
|
431 |
-
# Sanity check
|
432 |
-
if offset != avail_numel:
|
433 |
-
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
434 |
-
|
435 |
-
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
436 |
-
|
437 |
-
|
438 |
-
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
439 |
-
state_dict = OrderedDict()
|
440 |
-
|
441 |
-
# buffers
|
442 |
-
buffers = zero_model_states[0].buffers
|
443 |
-
state_dict.update(buffers)
|
444 |
-
if debug:
|
445 |
-
print(f"added {len(buffers)} buffers")
|
446 |
-
|
447 |
-
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
448 |
-
|
449 |
-
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
450 |
-
|
451 |
-
# recover shared parameters
|
452 |
-
for pair in zero_model_states[0].shared_params:
|
453 |
-
if pair[1] in state_dict:
|
454 |
-
state_dict[pair[0]] = state_dict[pair[1]]
|
455 |
-
|
456 |
-
return state_dict
|
457 |
-
|
458 |
-
|
459 |
-
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
|
460 |
-
"""
|
461 |
-
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
462 |
-
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
463 |
-
via a model hub.
|
464 |
-
|
465 |
-
Args:
|
466 |
-
- ``checkpoint_dir``: path to the desired checkpoint folder
|
467 |
-
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
468 |
-
|
469 |
-
Returns:
|
470 |
-
- pytorch ``state_dict``
|
471 |
-
|
472 |
-
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
473 |
-
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
474 |
-
the checkpoint.
|
475 |
-
|
476 |
-
A typical usage might be ::
|
477 |
-
|
478 |
-
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
479 |
-
# do the training and checkpoint saving
|
480 |
-
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
481 |
-
model = model.cpu() # move to cpu
|
482 |
-
model.load_state_dict(state_dict)
|
483 |
-
# submit to model hub or save the model to share with others
|
484 |
-
|
485 |
-
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
486 |
-
application. i.e. you will need to re-initialize the deepspeed engine, since
|
487 |
-
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
488 |
-
|
489 |
-
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
490 |
-
|
491 |
-
"""
|
492 |
-
if tag is None:
|
493 |
-
latest_path = os.path.join(checkpoint_dir, 'latest')
|
494 |
-
if os.path.isfile(latest_path):
|
495 |
-
with open(latest_path, 'r') as fd:
|
496 |
-
tag = fd.read().strip()
|
497 |
-
else:
|
498 |
-
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
499 |
-
|
500 |
-
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
501 |
-
|
502 |
-
if not os.path.isdir(ds_checkpoint_dir):
|
503 |
-
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
504 |
-
|
505 |
-
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
|
506 |
-
|
507 |
-
|
508 |
-
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
|
509 |
-
"""
|
510 |
-
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
511 |
-
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
512 |
-
|
513 |
-
Args:
|
514 |
-
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
515 |
-
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
516 |
-
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
517 |
-
"""
|
518 |
-
|
519 |
-
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
520 |
-
print(f"Saving fp32 state dict to {output_file}")
|
521 |
-
torch.save(state_dict, output_file)
|
522 |
-
|
523 |
-
|
524 |
-
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
525 |
-
"""
|
526 |
-
1. Put the provided model to cpu
|
527 |
-
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
528 |
-
3. Load it into the provided model
|
529 |
-
|
530 |
-
Args:
|
531 |
-
- ``model``: the model object to update
|
532 |
-
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
533 |
-
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
534 |
-
|
535 |
-
Returns:
|
536 |
-
- ``model`: modified model
|
537 |
-
|
538 |
-
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
539 |
-
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
540 |
-
conveniently placed for you in the checkpoint folder.
|
541 |
-
|
542 |
-
A typical usage might be ::
|
543 |
-
|
544 |
-
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
545 |
-
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
546 |
-
# submit to model hub or save the model to share with others
|
547 |
-
|
548 |
-
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
549 |
-
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
550 |
-
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
551 |
-
|
552 |
-
"""
|
553 |
-
logger.info(f"Extracting fp32 weights")
|
554 |
-
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
555 |
-
|
556 |
-
logger.info(f"Overwriting model with fp32 weights")
|
557 |
-
model = model.cpu()
|
558 |
-
model.load_state_dict(state_dict, strict=False)
|
559 |
-
|
560 |
-
return model
|
561 |
-
|
562 |
-
|
563 |
-
if __name__ == "__main__":
|
564 |
-
|
565 |
-
parser = argparse.ArgumentParser()
|
566 |
-
parser.add_argument("checkpoint_dir",
|
567 |
-
type=str,
|
568 |
-
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
569 |
-
parser.add_argument(
|
570 |
-
"output_file",
|
571 |
-
type=str,
|
572 |
-
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
|
573 |
-
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
574 |
-
args = parser.parse_args()
|
575 |
-
|
576 |
-
debug = args.debug
|
577 |
-
|
578 |
-
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|