| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						""" PyTorch KPhi-3 model.""" | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						import inspect | 
					
					
						
						| 
							 | 
						import math | 
					
					
						
						| 
							 | 
						import warnings | 
					
					
						
						| 
							 | 
						from typing import List, Optional, Tuple, Union | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						import torch | 
					
					
						
						| 
							 | 
						import torch.nn.functional as F | 
					
					
						
						| 
							 | 
						import torch.utils.checkpoint | 
					
					
						
						| 
							 | 
						from torch import nn | 
					
					
						
						| 
							 | 
						from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						from transformers.activations import ACT2FN | 
					
					
						
						| 
							 | 
						from transformers.generation import GenerationMixin | 
					
					
						
						| 
							 | 
						from transformers.cache_utils import Cache, DynamicCache, SlidingWindowCache, StaticCache | 
					
					
						
						| 
							 | 
						from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask | 
					
					
						
						| 
							 | 
						from transformers.modeling_outputs import ( | 
					
					
						
						| 
							 | 
						    BaseModelOutputWithPast, | 
					
					
						
						| 
							 | 
						    CausalLMOutputWithPast, | 
					
					
						
						| 
							 | 
						    SequenceClassifierOutputWithPast, | 
					
					
						
						| 
							 | 
						    TokenClassifierOutput, | 
					
					
						
						| 
							 | 
						) | 
					
					
						
						| 
							 | 
						from transformers.modeling_utils import PreTrainedModel | 
					
					
						
						| 
							 | 
						from transformers.utils import ( | 
					
					
						
						| 
							 | 
						    add_code_sample_docstrings, | 
					
					
						
						| 
							 | 
						    add_start_docstrings, | 
					
					
						
						| 
							 | 
						    add_start_docstrings_to_model_forward, | 
					
					
						
						| 
							 | 
						    is_flash_attn_2_available, | 
					
					
						
						| 
							 | 
						    is_flash_attn_greater_or_equal_2_10, | 
					
					
						
						| 
							 | 
						    logging, | 
					
					
						
						| 
							 | 
						    replace_return_docstrings, | 
					
					
						
						| 
							 | 
						) | 
					
					
						
						| 
							 | 
						from .configuration_kphi3 import KPhi3Config | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						if is_flash_attn_2_available(): | 
					
					
						
						| 
							 | 
						    from transformers.modeling_flash_attention_utils import _flash_attention_forward | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						def get_max_acceptable_common_divisor(a, b, max_acceptable=1000000): | 
					
					
						
						| 
							 | 
						  """ | 
					
					
						
						| 
							 | 
						  This is an inefficient max acceptable common divisor implementation to be improved. | 
					
					
						
						| 
							 | 
						    # Arguments | 
					
					
						
						| 
							 | 
						        a: is an integer. | 
					
					
						
						| 
							 | 
						        b: is an integer. | 
					
					
						
						| 
							 | 
						        max_acceptable: maximum acceptable common divisor. | 
					
					
						
						| 
							 | 
						  """ | 
					
					
						
						| 
							 | 
						  divisor = max(1, min(a, b, max_acceptable)) | 
					
					
						
						| 
							 | 
						  while divisor > 0: | 
					
					
						
						| 
							 | 
						      if a % divisor == 0 and b % divisor == 0: | 
					
					
						
						| 
							 | 
						          return divisor | 
					
					
						
						| 
							 | 
						          break | 
					
					
						
						| 
							 | 
						      divisor -= 1 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						class InterleaveChannels(nn.Module): | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						    This layer interleaves channels stepping according to the number passed as parameter. | 
					
					
						
						| 
							 | 
						    This layer assumes "channel last". | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						    def __init__(self, step_size=2, last_dim=3): | 
					
					
						
						| 
							 | 
						        super().__init__() | 
					
					
						
						| 
							 | 
						        self.step_size = step_size if step_size >= 2 else 1 | 
					
					
						
						| 
							 | 
						        self.last_dim = last_dim | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def forward(self, x): | 
					
					
						
						| 
							 | 
						      if (self.last_dim==3): | 
					
					
						
						| 
							 | 
						        return torch.cat([x[:, :, :, shift_pos::self.step_size] for shift_pos in range(self.step_size)], dim=3) | 
					
					
						
						| 
							 | 
						      else: | 
					
					
						
						| 
							 | 
						        if (self.last_dim==2): | 
					
					
						
						| 
							 | 
						          return torch.cat([x[:, :, shift_pos::self.step_size] for shift_pos in range(self.step_size)], dim=2) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						def SignedSquareRoot1(x): | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						    Custom activation function that implements: | 
					
					
						
						| 
							 | 
						    f(x) = sqrt(x)     for x > 1 | 
					
					
						
						| 
							 | 
						    f(x) = sqrt(-x)    for x < -1 | 
					
					
						
						| 
							 | 
						    f(x) = x           for -1 ≤ x ≤ 1 | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						    return torch.where(x > 1, | 
					
					
						
						| 
							 | 
						      torch.sqrt(x), | 
					
					
						
						| 
							 | 
						      torch.where(x < -1, torch.sqrt(-x), x) | 
					
					
						
						| 
							 | 
						    ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						class InterleaveChannelsFast(nn.Module): | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						    This layer interleaves channels stepping according to the number passed as parameter. | 
					
					
						
						| 
							 | 
						    This layer assumes "channel last". | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						    def __init__(self, step_size=2, last_dim=3): | 
					
					
						
						| 
							 | 
						        super().__init__() | 
					
					
						
						| 
							 | 
						        self.step_size = max(step_size, 1) | 
					
					
						
						| 
							 | 
						        self.last_dim = last_dim | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def forward(self, x): | 
					
					
						
						| 
							 | 
						        if self.last_dim == 3: | 
					
					
						
						| 
							 | 
						            N, H, W, C = x.shape | 
					
					
						
						| 
							 | 
						            if C % self.step_size != 0: | 
					
					
						
						| 
							 | 
						                raise ValueError("Number of channels must be divisible by step_size") | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            x = x.view(N, H, W, self.step_size, C // self.step_size) | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            x = x.permute(0, 1, 2, 4, 3) | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            x = x.reshape(N, H, W, C) | 
					
					
						
						| 
							 | 
						            return x | 
					
					
						
						| 
							 | 
						        elif self.last_dim == 2: | 
					
					
						
						| 
							 | 
						            N, H, W = x.shape | 
					
					
						
						| 
							 | 
						            if W % self.step_size != 0: | 
					
					
						
						| 
							 | 
						                raise ValueError("Width must be divisible by step_size") | 
					
					
						
						| 
							 | 
						            x = x.view(N, H, self.step_size, W // self.step_size) | 
					
					
						
						| 
							 | 
						            x = x.permute(0, 1, 3, 2) | 
					
					
						
						| 
							 | 
						            x = x.reshape(N, H, W) | 
					
					
						
						| 
							 | 
						            return x | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            raise ValueError("last_dim must be 2 or 3") | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						class GroupedLinear(nn.Module): | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						    Similarly to a grouped pointwise convolution, this layer is a grouped linear layer. | 
					
					
						
						| 
							 | 
						    This layer assumes "channel last". | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						    def __init__(self, in_features, out_features, num_groups=1, bias=True): | 
					
					
						
						| 
							 | 
						            super().__init__() | 
					
					
						
						| 
							 | 
						            self.in_features = in_features | 
					
					
						
						| 
							 | 
						            self.out_features = out_features | 
					
					
						
						| 
							 | 
						            self.num_groups = num_groups | 
					
					
						
						| 
							 | 
						            self.bias = bias | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            if in_features % num_groups != 0: | 
					
					
						
						| 
							 | 
						                raise ValueError("Input features must be divisible by num_groups.") | 
					
					
						
						| 
							 | 
						            if out_features % num_groups != 0: | 
					
					
						
						| 
							 | 
						                raise ValueError("Output features must be divisible by num_groups.") | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            self.in_features_per_group = in_features // num_groups | 
					
					
						
						| 
							 | 
						            self.out_features_per_group = out_features // num_groups | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            self.group_layers = nn.ModuleList([ | 
					
					
						
						| 
							 | 
						                nn.Linear(self.in_features_per_group, self.out_features_per_group, bias=bias) | 
					
					
						
						| 
							 | 
						                for _ in range(num_groups) | 
					
					
						
						| 
							 | 
						            ]) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def forward(self, x): | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            if self.in_features != x.shape[-1]: | 
					
					
						
						| 
							 | 
						                raise ValueError( | 
					
					
						
						| 
							 | 
						                    "GroupedLinear error: "+ | 
					
					
						
						| 
							 | 
						                    "expected in_feautures "+str(self.in_features)+ | 
					
					
						
						| 
							 | 
						                    " but got "+str(x.shape[-1]) | 
					
					
						
						| 
							 | 
						                 ) | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            x_groups = x.chunk(self.num_groups, dim=-1) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            out_groups = [layer(group) for layer, group in zip(self.group_layers, x_groups)] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            out = torch.cat(out_groups, dim=-1) | 
					
					
						
						| 
							 | 
						            if self.out_features != out.shape[-1]: | 
					
					
						
						| 
							 | 
						                raise ValueError( | 
					
					
						
						| 
							 | 
						                    "GroupedLinear error: "+ | 
					
					
						
						| 
							 | 
						                    "expected out_feautures "+str(self.out_features)+ | 
					
					
						
						| 
							 | 
						                    " but got "+str(out.shape[-1]) | 
					
					
						
						| 
							 | 
						                 ) | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            return out | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						class GroupedLinearFast(nn.Module): | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						    Optimized grouped linear layer. | 
					
					
						
						| 
							 | 
						    This layer assumes "channel last". | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						    def __init__(self, in_features, out_features, num_groups=1, bias=True): | 
					
					
						
						| 
							 | 
						        super().__init__() | 
					
					
						
						| 
							 | 
						        self.in_features = in_features | 
					
					
						
						| 
							 | 
						        self.out_features = out_features | 
					
					
						
						| 
							 | 
						        self.num_groups = num_groups | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        if in_features % num_groups != 0: | 
					
					
						
						| 
							 | 
						            raise ValueError("Input features must be divisible by num_groups.") | 
					
					
						
						| 
							 | 
						        if out_features % num_groups != 0: | 
					
					
						
						| 
							 | 
						            raise ValueError("Output features must be divisible by num_groups.") | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        self.in_features_per_group = in_features // num_groups | 
					
					
						
						| 
							 | 
						        self.out_features_per_group = out_features // num_groups | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        self.weight = nn.Parameter( | 
					
					
						
						| 
							 | 
						            torch.Tensor(num_groups, self.in_features_per_group, self.out_features_per_group) | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						        if bias: | 
					
					
						
						| 
							 | 
						            self.bias = nn.Parameter(torch.Tensor(num_groups, self.out_features_per_group)) | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            self.register_parameter('bias', None) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        self.reset_parameters() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def reset_parameters(self): | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        nn.init.kaiming_uniform_(self.weight, a=math.sqrt(5)) | 
					
					
						
						| 
							 | 
						        if self.bias is not None: | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            fan_in = self.in_features_per_group | 
					
					
						
						| 
							 | 
						            bound = 1 / math.sqrt(fan_in) | 
					
					
						
						| 
							 | 
						            nn.init.uniform_(self.bias, -bound, bound) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def forward(self, x): | 
					
					
						
						| 
							 | 
						        in_shape = x.shape | 
					
					
						
						| 
							 | 
						        if x.shape[-1] != self.in_features: | 
					
					
						
						| 
							 | 
						            raise ValueError( | 
					
					
						
						| 
							 | 
						                f"GroupedLinear error: expected in_features {self.in_features}, but got {x.shape[-1]}" | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        x = x.view(*x.shape[:-1], self.num_groups, self.in_features_per_group) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        out = torch.einsum('...ni,niq->...nq', x, self.weight) | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        if self.bias is not None: | 
					
					
						
						| 
							 | 
						            out += self.bias | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        out = out.contiguous().view(*out.shape[:-2], self.out_features) | 
					
					
						
						| 
							 | 
						        return out | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						class GroupedPointwiseConvolutionBlock(nn.Module): | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						    This layer is composed by a grouped pointwise convolution followed by interleaving and another grouped pointwise comvolution with skip connection. This basic architecture can | 
					
					
						
						| 
							 | 
						    vary according to the input tensor and its parameters. This is the basic building block for the papers: | 
					
					
						
						| 
							 | 
						    https://www.researchgate.net/publication/360226228_Grouped_Pointwise_Convolutions_Reduce_Parameters_in_Convolutional_Neural_Networks | 
					
					
						
						| 
							 | 
						    https://www.researchgate.net/publication/355214501_Grouped_Pointwise_Convolutions_Significantly_Reduces_Parameters_in_EfficientNet | 
					
					
						
						| 
							 | 
						    This layer assumes "channel last". | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						    def __init__(self, in_features, out_features, min_channels_per_group=32, last_dim=2, use_bias=False, activation=None, has_batch_norm=False, has_batch_scale=False): | 
					
					
						
						| 
							 | 
						        super().__init__() | 
					
					
						
						| 
							 | 
						        self.in_features = in_features | 
					
					
						
						| 
							 | 
						        self.out_features = out_features | 
					
					
						
						| 
							 | 
						        self.min_channels_per_group = min_channels_per_group | 
					
					
						
						| 
							 | 
						        self.last_dim = last_dim | 
					
					
						
						| 
							 | 
						        self.activation = activation | 
					
					
						
						| 
							 | 
						        self.has_batch_norm = has_batch_norm | 
					
					
						
						| 
							 | 
						        self.has_batch_scale = has_batch_scale | 
					
					
						
						| 
							 | 
						        self.has_interleaving = False | 
					
					
						
						| 
							 | 
						        self.use_bias = use_bias | 
					
					
						
						| 
							 | 
						        self.grouped = False | 
					
					
						
						| 
							 | 
						        self.second_conv = False | 
					
					
						
						| 
							 | 
						        self.first_pointwise_conv = None | 
					
					
						
						| 
							 | 
						        self.second_pointwise_conv = None | 
					
					
						
						| 
							 | 
						        self.interleave_layer = None | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        self.weight = torch.Tensor(1, 1, 1) | 
					
					
						
						| 
							 | 
						        self.bias = torch.Tensor(1, 1, 1) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        prev_layer_channel_count = in_features | 
					
					
						
						| 
							 | 
						        output_channel_count = out_features | 
					
					
						
						| 
							 | 
						        max_acceptable_divisor = (prev_layer_channel_count//min_channels_per_group) | 
					
					
						
						| 
							 | 
						        group_count = get_max_acceptable_common_divisor(prev_layer_channel_count, output_channel_count, max_acceptable = max_acceptable_divisor) | 
					
					
						
						| 
							 | 
						        if group_count is None: group_count=1 | 
					
					
						
						| 
							 | 
						        self.output_group_size = output_channel_count // group_count | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if (group_count>1): | 
					
					
						
						| 
							 | 
						            self.grouped = True | 
					
					
						
						| 
							 | 
						            self.first_pointwise_conv = GroupedLinearFast(in_features=in_features, out_features=out_features, num_groups=group_count, bias=use_bias) | 
					
					
						
						| 
							 | 
						            if self.output_group_size > 1: | 
					
					
						
						| 
							 | 
						                self.has_interleaving = True | 
					
					
						
						| 
							 | 
						                self.interleave_layer = InterleaveChannelsFast(self.output_group_size, last_dim=last_dim) | 
					
					
						
						| 
							 | 
						            if (prev_layer_channel_count >= output_channel_count): | 
					
					
						
						| 
							 | 
						                 | 
					
					
						
						| 
							 | 
						                self.second_conv = True | 
					
					
						
						| 
							 | 
						                self.second_pointwise_conv = GroupedLinearFast(in_features=out_features, out_features=out_features, num_groups=group_count, bias=use_bias) | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            self.first_pointwise_conv = GroupedLinear(in_features=in_features, out_features=out_features, num_groups=1, bias=use_bias) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def forward(self, x): | 
					
					
						
						| 
							 | 
						      if (self.grouped): | 
					
					
						
						| 
							 | 
						        output_tensor = self.first_pointwise_conv(x) | 
					
					
						
						| 
							 | 
						        if self.activation is not None: | 
					
					
						
						| 
							 | 
						          output_tensor = self.activation(output_tensor) | 
					
					
						
						| 
							 | 
						        compression_tensor = output_tensor | 
					
					
						
						| 
							 | 
						        if self.has_interleaving: | 
					
					
						
						| 
							 | 
						          output_tensor = self.interleave_layer(output_tensor) | 
					
					
						
						| 
							 | 
						        if self.second_conv: | 
					
					
						
						| 
							 | 
						          output_tensor = self.second_pointwise_conv(output_tensor) | 
					
					
						
						| 
							 | 
						          if self.activation is not None: | 
					
					
						
						| 
							 | 
						            output_tensor = self.activation(output_tensor) | 
					
					
						
						| 
							 | 
						          output_tensor = output_tensor + compression_tensor | 
					
					
						
						| 
							 | 
						      else: | 
					
					
						
						| 
							 | 
						        output_tensor = self.first_pointwise_conv(x) | 
					
					
						
						| 
							 | 
						        if self.activation is not None: | 
					
					
						
						| 
							 | 
						            output_tensor = self.activation(output_tensor) | 
					
					
						
						| 
							 | 
						      return output_tensor | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						logger = logging.get_logger(__name__) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						_flash_supports_window_size = False | 
					
					
						
						| 
							 | 
						try: | 
					
					
						
						| 
							 | 
						    from flash_attn import flash_attn_func, flash_attn_varlen_func | 
					
					
						
						| 
							 | 
						    from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input   | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    _flash_supports_window_size = "window_size" in list(inspect.signature(flash_attn_func).parameters) | 
					
					
						
						| 
							 | 
						except ImportError as error: | 
					
					
						
						| 
							 | 
						    logger.warning( | 
					
					
						
						| 
							 | 
						        f"`flash-attention` package not found, consider installing for better performance: {error}." | 
					
					
						
						| 
							 | 
						    ) | 
					
					
						
						| 
							 | 
						    if not _flash_supports_window_size: | 
					
					
						
						| 
							 | 
						        logger.warning( | 
					
					
						
						| 
							 | 
						            "Current `flash-attention` does not support `window_size`. Either upgrade or use `attn_implementation='eager'`." | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						_CHECKPOINT_FOR_DOC = "microsoft/Phi-3-mini-4k-instruct" | 
					
					
						
						| 
							 | 
						_CONFIG_FOR_DOC = "KPhi3Config" | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						def _prepare_4d_causal_attention_mask_with_cache_position( | 
					
					
						
						| 
							 | 
						    attention_mask: torch.Tensor, | 
					
					
						
						| 
							 | 
						    sequence_length: int, | 
					
					
						
						| 
							 | 
						    target_length: int, | 
					
					
						
						| 
							 | 
						    dtype: torch.dtype, | 
					
					
						
						| 
							 | 
						    device: torch.device, | 
					
					
						
						| 
							 | 
						    min_dtype: float, | 
					
					
						
						| 
							 | 
						    cache_position: torch.Tensor, | 
					
					
						
						| 
							 | 
						    batch_size: int, | 
					
					
						
						| 
							 | 
						): | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						    Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape | 
					
					
						
						| 
							 | 
						    `(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						    Args: | 
					
					
						
						| 
							 | 
						        attention_mask (`torch.Tensor`): | 
					
					
						
						| 
							 | 
						            A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`. | 
					
					
						
						| 
							 | 
						        sequence_length (`int`): | 
					
					
						
						| 
							 | 
						            The sequence length being processed. | 
					
					
						
						| 
							 | 
						        target_length (`int`): | 
					
					
						
						| 
							 | 
						            The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet. | 
					
					
						
						| 
							 | 
						        dtype (`torch.dtype`): | 
					
					
						
						| 
							 | 
						            The dtype to use for the 4D attention mask. | 
					
					
						
						| 
							 | 
						        device (`torch.device`): | 
					
					
						
						| 
							 | 
						            The device to plcae the 4D attention mask on. | 
					
					
						
						| 
							 | 
						        min_dtype (`float`): | 
					
					
						
						| 
							 | 
						            The minimum value representable with the dtype `dtype`. | 
					
					
						
						| 
							 | 
						        cache_position (`torch.Tensor`): | 
					
					
						
						| 
							 | 
						            Indices depicting the position of the input sequence tokens in the sequence. | 
					
					
						
						| 
							 | 
						        batch_size (`torch.Tensor`): | 
					
					
						
						| 
							 | 
						            Batch size. | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						    if attention_mask is not None and attention_mask.dim() == 4: | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        causal_mask = attention_mask | 
					
					
						
						| 
							 | 
						    else: | 
					
					
						
						| 
							 | 
						        causal_mask = torch.full((sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device) | 
					
					
						
						| 
							 | 
						        if sequence_length != 1: | 
					
					
						
						| 
							 | 
						            causal_mask = torch.triu(causal_mask, diagonal=1) | 
					
					
						
						| 
							 | 
						        causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1) | 
					
					
						
						| 
							 | 
						        causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1) | 
					
					
						
						| 
							 | 
						        if attention_mask is not None: | 
					
					
						
						| 
							 | 
						            causal_mask = causal_mask.clone()   | 
					
					
						
						| 
							 | 
						            mask_length = attention_mask.shape[-1] | 
					
					
						
						| 
							 | 
						            padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :] | 
					
					
						
						| 
							 | 
						            padding_mask = padding_mask == 0 | 
					
					
						
						| 
							 | 
						            causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill( | 
					
					
						
						| 
							 | 
						                padding_mask, min_dtype | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    return causal_mask | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						class Phi3RMSNorm(nn.Module): | 
					
					
						
						| 
							 | 
						    def __init__(self, hidden_size, eps=1e-6): | 
					
					
						
						| 
							 | 
						        """ | 
					
					
						
						| 
							 | 
						        Phi3RMSNorm is equivalent to T5LayerNorm | 
					
					
						
						| 
							 | 
						        """ | 
					
					
						
						| 
							 | 
						        super().__init__() | 
					
					
						
						| 
							 | 
						        self.weight = nn.Parameter(torch.ones(hidden_size)) | 
					
					
						
						| 
							 | 
						        self.variance_epsilon = eps | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def forward(self, hidden_states): | 
					
					
						
						| 
							 | 
						        input_dtype = hidden_states.dtype | 
					
					
						
						| 
							 | 
						        hidden_states = hidden_states.to(torch.float32) | 
					
					
						
						| 
							 | 
						        variance = hidden_states.pow(2).mean(-1, keepdim=True) | 
					
					
						
						| 
							 | 
						        hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) | 
					
					
						
						| 
							 | 
						        return self.weight * hidden_states.to(input_dtype) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def extra_repr(self): | 
					
					
						
						| 
							 | 
						        return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}" | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						class Phi3RotaryEmbedding(nn.Module): | 
					
					
						
						| 
							 | 
						    def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None): | 
					
					
						
						| 
							 | 
						        super().__init__() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        self.dim = dim | 
					
					
						
						| 
							 | 
						        self.max_position_embeddings = max_position_embeddings | 
					
					
						
						| 
							 | 
						        self.base = base | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float() / self.dim)) | 
					
					
						
						| 
							 | 
						        self.register_buffer("inv_freq", tensor=inv_freq, persistent=False) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    @torch.no_grad() | 
					
					
						
						| 
							 | 
						    def forward(self, x, position_ids, seq_len=None): | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        self.inv_freq.to(x.device) | 
					
					
						
						| 
							 | 
						        inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1) | 
					
					
						
						| 
							 | 
						        position_ids_expanded = position_ids[:, None, :].float() | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        device_type = x.device.type | 
					
					
						
						| 
							 | 
						        device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu" | 
					
					
						
						| 
							 | 
						        with torch.autocast(device_type=device_type, enabled=False): | 
					
					
						
						| 
							 | 
						            freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2) | 
					
					
						
						| 
							 | 
						            emb = torch.cat((freqs, freqs), dim=-1) | 
					
					
						
						| 
							 | 
						            cos = emb.cos() | 
					
					
						
						| 
							 | 
						            sin = emb.sin() | 
					
					
						
						| 
							 | 
						        return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						class Phi3SuScaledRotaryEmbedding(Phi3RotaryEmbedding): | 
					
					
						
						| 
							 | 
						    def __init__(self, dim, config, device=None): | 
					
					
						
						| 
							 | 
						        warnings.warn( | 
					
					
						
						| 
							 | 
						            "The class Phi3SuScaledRotaryEmbedding is deprecated and will be removed in version 5 of Transformers. Please" | 
					
					
						
						| 
							 | 
						            " use Phi3LongRoPEScaledRotaryEmbedding instead.", | 
					
					
						
						| 
							 | 
						            FutureWarning, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						        super().__init__(dim, config.max_position_embeddings, config.rope_theta, device) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        self.short_factor = config.rope_scaling["short_factor"] | 
					
					
						
						| 
							 | 
						        self.long_factor = config.rope_scaling["long_factor"] | 
					
					
						
						| 
							 | 
						        self.original_max_position_embeddings = config.original_max_position_embeddings | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    @torch.no_grad() | 
					
					
						
						| 
							 | 
						    def forward(self, x, position_ids, seq_len=None): | 
					
					
						
						| 
							 | 
						        seq_len = torch.max(position_ids) + 1 | 
					
					
						
						| 
							 | 
						        if seq_len > self.original_max_position_embeddings: | 
					
					
						
						| 
							 | 
						            ext_factors = torch.tensor(self.long_factor, dtype=torch.float32, device=x.device) | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            ext_factors = torch.tensor(self.short_factor, dtype=torch.float32, device=x.device) | 
					
					
						
						| 
							 | 
						        inv_freq_shape = torch.arange(0, self.dim, 2, dtype=torch.int64, device=x.device).float() / self.dim | 
					
					
						
						| 
							 | 
						        self.inv_freq = 1.0 / (ext_factors * self.base**inv_freq_shape) | 
					
					
						
						| 
							 | 
						        inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1) | 
					
					
						
						| 
							 | 
						        position_ids_expanded = position_ids[:, None, :].float() | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        device_type = x.device.type | 
					
					
						
						| 
							 | 
						        device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu" | 
					
					
						
						| 
							 | 
						        with torch.autocast(device_type=device_type, enabled=False): | 
					
					
						
						| 
							 | 
						            freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2) | 
					
					
						
						| 
							 | 
						            emb = torch.cat((freqs, freqs), dim=-1) | 
					
					
						
						| 
							 | 
						            scale = self.max_position_embeddings / self.original_max_position_embeddings | 
					
					
						
						| 
							 | 
						            if scale <= 1.0: | 
					
					
						
						| 
							 | 
						                scaling_factor = 1.0 | 
					
					
						
						| 
							 | 
						            else: | 
					
					
						
						| 
							 | 
						                scaling_factor = math.sqrt(1 + math.log(scale) / math.log(self.original_max_position_embeddings)) | 
					
					
						
						| 
							 | 
						            cos = emb.cos() * scaling_factor | 
					
					
						
						| 
							 | 
						            sin = emb.sin() * scaling_factor | 
					
					
						
						| 
							 | 
						        return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						class Phi3YarnScaledRotaryEmbedding(Phi3RotaryEmbedding): | 
					
					
						
						| 
							 | 
						    def __init__(self, dim, config, device=None): | 
					
					
						
						| 
							 | 
						        warnings.warn( | 
					
					
						
						| 
							 | 
						            "The class Phi3YarnScaledRotaryEmbedding is deprecated and will be removed in version 5 of Transformers", | 
					
					
						
						| 
							 | 
						            FutureWarning, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						        super().__init__(dim, config.max_position_embeddings, config.rope_theta, device) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        self.short_factor = config.rope_scaling["short_factor"] | 
					
					
						
						| 
							 | 
						        self.long_factor = config.rope_scaling["long_factor"] | 
					
					
						
						| 
							 | 
						        self.original_max_position_embeddings = config.original_max_position_embeddings | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    @torch.no_grad() | 
					
					
						
						| 
							 | 
						    def forward(self, x, position_ids, seq_len=None): | 
					
					
						
						| 
							 | 
						        seq_len = torch.max(position_ids) + 1 | 
					
					
						
						| 
							 | 
						        if seq_len > self.original_max_position_embeddings: | 
					
					
						
						| 
							 | 
						            ext_factors = torch.tensor(self.long_factor, dtype=torch.float32, device=x.device) | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            ext_factors = torch.tensor(self.short_factor, dtype=torch.float32, device=x.device) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        inv_freq_shape = torch.arange(0, self.dim, 2, dtype=torch.int64, device=x.device).float() / self.dim | 
					
					
						
						| 
							 | 
						        self.inv_freq = 1.0 / (ext_factors * self.base**inv_freq_shape) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1) | 
					
					
						
						| 
							 | 
						        position_ids_expanded = position_ids[:, None, :].float() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        device_type = x.device.type | 
					
					
						
						| 
							 | 
						        device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu" | 
					
					
						
						| 
							 | 
						        with torch.autocast(device_type=device_type, enabled=False): | 
					
					
						
						| 
							 | 
						            freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2) | 
					
					
						
						| 
							 | 
						            emb = torch.cat((freqs, freqs), dim=-1) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            scale = self.max_position_embeddings / self.original_max_position_embeddings | 
					
					
						
						| 
							 | 
						            if scale <= 1.0: | 
					
					
						
						| 
							 | 
						                scaling_factor = 1.0 | 
					
					
						
						| 
							 | 
						            else: | 
					
					
						
						| 
							 | 
						                scaling_factor = 0.1 * math.log(scale) + 1.0 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            cos = emb.cos() * scaling_factor | 
					
					
						
						| 
							 | 
						            sin = emb.sin() * scaling_factor | 
					
					
						
						| 
							 | 
						        return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						class Phi3LongRoPEScaledRotaryEmbedding(Phi3RotaryEmbedding): | 
					
					
						
						| 
							 | 
						    def __init__(self, dim, config, device=None): | 
					
					
						
						| 
							 | 
						        super().__init__(dim, config.max_position_embeddings, config.rope_theta, device) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        self.short_factor = config.rope_scaling["short_factor"] | 
					
					
						
						| 
							 | 
						        self.long_factor = config.rope_scaling["long_factor"] | 
					
					
						
						| 
							 | 
						        self.original_max_position_embeddings = config.original_max_position_embeddings | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    @torch.no_grad() | 
					
					
						
						| 
							 | 
						    def forward(self, x, position_ids, seq_len=None): | 
					
					
						
						| 
							 | 
						        seq_len = torch.max(position_ids) + 1 | 
					
					
						
						| 
							 | 
						        if seq_len > self.original_max_position_embeddings: | 
					
					
						
						| 
							 | 
						            ext_factors = torch.tensor(self.long_factor, dtype=torch.float32, device=x.device) | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            ext_factors = torch.tensor(self.short_factor, dtype=torch.float32, device=x.device) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        inv_freq_shape = torch.arange(0, self.dim, 2, dtype=torch.int64, device=x.device).float() / self.dim | 
					
					
						
						| 
							 | 
						        self.inv_freq = 1.0 / (ext_factors * self.base**inv_freq_shape) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1) | 
					
					
						
						| 
							 | 
						        position_ids_expanded = position_ids[:, None, :].float() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        device_type = x.device.type | 
					
					
						
						| 
							 | 
						        device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu" | 
					
					
						
						| 
							 | 
						        with torch.autocast(device_type=device_type, enabled=False): | 
					
					
						
						| 
							 | 
						            freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2) | 
					
					
						
						| 
							 | 
						            emb = torch.cat((freqs, freqs), dim=-1) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            scale = self.max_position_embeddings / self.original_max_position_embeddings | 
					
					
						
						| 
							 | 
						            if scale <= 1.0: | 
					
					
						
						| 
							 | 
						                scaling_factor = 1.0 | 
					
					
						
						| 
							 | 
						            else: | 
					
					
						
						| 
							 | 
						                scaling_factor = math.sqrt(1 + math.log(scale) / math.log(self.original_max_position_embeddings)) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            cos = emb.cos() * scaling_factor | 
					
					
						
						| 
							 | 
						            sin = emb.sin() * scaling_factor | 
					
					
						
						| 
							 | 
						        return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						def rotate_half(x): | 
					
					
						
						| 
							 | 
						    """Rotates half the hidden dims of the input.""" | 
					
					
						
						| 
							 | 
						    x1 = x[..., : x.shape[-1] // 2] | 
					
					
						
						| 
							 | 
						    x2 = x[..., x.shape[-1] // 2 :] | 
					
					
						
						| 
							 | 
						    return torch.cat((-x2, x1), dim=-1) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1): | 
					
					
						
						| 
							 | 
						    """Applies Rotary Position Embedding to the query and key tensors. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						    Args: | 
					
					
						
						| 
							 | 
						        q (`torch.Tensor`): The query tensor. | 
					
					
						
						| 
							 | 
						        k (`torch.Tensor`): The key tensor. | 
					
					
						
						| 
							 | 
						        cos (`torch.Tensor`): The cosine part of the rotary embedding. | 
					
					
						
						| 
							 | 
						        sin (`torch.Tensor`): The sine part of the rotary embedding. | 
					
					
						
						| 
							 | 
						        position_ids (`torch.Tensor`, *optional*): | 
					
					
						
						| 
							 | 
						            Deprecated and unused. | 
					
					
						
						| 
							 | 
						        unsqueeze_dim (`int`, *optional*, defaults to 1): | 
					
					
						
						| 
							 | 
						            The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and | 
					
					
						
						| 
							 | 
						            sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note | 
					
					
						
						| 
							 | 
						            that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and | 
					
					
						
						| 
							 | 
						            k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes | 
					
					
						
						| 
							 | 
						            cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have | 
					
					
						
						| 
							 | 
						            the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. | 
					
					
						
						| 
							 | 
						    Returns: | 
					
					
						
						| 
							 | 
						        `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						    cos = cos.unsqueeze(unsqueeze_dim) | 
					
					
						
						| 
							 | 
						    sin = sin.unsqueeze(unsqueeze_dim) | 
					
					
						
						| 
							 | 
						    q_embed = (q * cos) + (rotate_half(q) * sin) | 
					
					
						
						| 
							 | 
						    k_embed = (k * cos) + (rotate_half(k) * sin) | 
					
					
						
						| 
							 | 
						    return q_embed, k_embed | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						class KPhi3MLP(nn.Module): | 
					
					
						
						| 
							 | 
						    def __init__(self, config): | 
					
					
						
						| 
							 | 
						        super().__init__() | 
					
					
						
						| 
							 | 
						        self.config = config | 
					
					
						
						| 
							 | 
						        self.activation_fn = ACT2FN[config.hidden_act] | 
					
					
						
						| 
							 | 
						        if self.config.min_channels_per_group >= 0: | 
					
					
						
						| 
							 | 
						          self.gate_up_proj = GroupedPointwiseConvolutionBlock(in_features=config.hidden_size, out_features=(2*config.intermediate_size), min_channels_per_group=self.config.min_channels_per_group , last_dim=2, use_bias=False) | 
					
					
						
						| 
							 | 
						          self.down_proj = GroupedPointwiseConvolutionBlock(in_features=config.intermediate_size, out_features=config.hidden_size, min_channels_per_group=self.config.min_channels_per_group, last_dim=2, use_bias=False) | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						          self.gate_up_proj = nn.Linear(config.hidden_size, 2 * config.intermediate_size, bias=False) | 
					
					
						
						| 
							 | 
						          self.down_proj = nn.Linear(config.intermediate_size, config.hidden_size, bias=False) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor: | 
					
					
						
						| 
							 | 
						        up_states = self.gate_up_proj(hidden_states) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        gate, up_states = up_states.chunk(2, dim=-1) | 
					
					
						
						| 
							 | 
						        up_states = up_states * self.activation_fn(gate) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        return self.down_proj(up_states) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						    This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, | 
					
					
						
						| 
							 | 
						    num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						    batch, num_key_value_heads, slen, head_dim = hidden_states.shape | 
					
					
						
						| 
							 | 
						    if n_rep == 1: | 
					
					
						
						| 
							 | 
						        return hidden_states | 
					
					
						
						| 
							 | 
						    hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) | 
					
					
						
						| 
							 | 
						    return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						class KPhi3Attention(nn.Module): | 
					
					
						
						| 
							 | 
						    """Multi-headed attention from 'Attention Is All You Need' paper""" | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def __init__(self, config: KPhi3Config, layer_idx: Optional[int] = None): | 
					
					
						
						| 
							 | 
						        super().__init__() | 
					
					
						
						| 
							 | 
						        self.config = config | 
					
					
						
						| 
							 | 
						        self.layer_idx = layer_idx | 
					
					
						
						| 
							 | 
						        if layer_idx is None: | 
					
					
						
						| 
							 | 
						            logger.warning_once( | 
					
					
						
						| 
							 | 
						                f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will " | 
					
					
						
						| 
							 | 
						                "lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` " | 
					
					
						
						| 
							 | 
						                "when creating this class." | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        self.attention_dropout = config.attention_dropout | 
					
					
						
						| 
							 | 
						        self.hidden_size = config.hidden_size | 
					
					
						
						| 
							 | 
						        self.num_heads = config.num_attention_heads | 
					
					
						
						| 
							 | 
						        self.head_dim = self.hidden_size // self.num_heads | 
					
					
						
						| 
							 | 
						        self.num_key_value_heads = config.num_key_value_heads | 
					
					
						
						| 
							 | 
						        self.num_key_value_groups = self.num_heads // self.num_key_value_heads | 
					
					
						
						| 
							 | 
						        self.max_position_embeddings = config.max_position_embeddings | 
					
					
						
						| 
							 | 
						        self.original_max_position_embeddings = config.original_max_position_embeddings | 
					
					
						
						| 
							 | 
						        self.rope_theta = config.rope_theta | 
					
					
						
						| 
							 | 
						        self.rope_scaling = config.rope_scaling | 
					
					
						
						| 
							 | 
						        self.is_causal = True | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if (self.head_dim * self.num_heads) != self.hidden_size: | 
					
					
						
						| 
							 | 
						            raise ValueError( | 
					
					
						
						| 
							 | 
						                f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}" | 
					
					
						
						| 
							 | 
						                f" and `num_heads`: {self.num_heads})." | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        op_size = self.num_heads * self.head_dim + 2 * (self.num_key_value_heads * self.head_dim) | 
					
					
						
						| 
							 | 
						        if self.config.min_channels_per_group >= 0: | 
					
					
						
						| 
							 | 
						          self.o_proj = GroupedPointwiseConvolutionBlock(in_features=self.num_heads * self.head_dim, out_features=self.hidden_size, min_channels_per_group=self.config.min_channels_per_group, last_dim=2, use_bias=False) | 
					
					
						
						| 
							 | 
						          self.qkv_proj = GroupedPointwiseConvolutionBlock(in_features=self.hidden_size, out_features=op_size, min_channels_per_group=self.config.min_channels_per_group, last_dim=2, use_bias=False) | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						          self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False) | 
					
					
						
						| 
							 | 
						          self.qkv_proj = nn.Linear(self.hidden_size, op_size, bias=False) | 
					
					
						
						| 
							 | 
						        self._init_rope() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def _init_rope(self): | 
					
					
						
						| 
							 | 
						        if self.rope_scaling is None: | 
					
					
						
						| 
							 | 
						            self.rotary_emb = Phi3RotaryEmbedding( | 
					
					
						
						| 
							 | 
						                self.head_dim, | 
					
					
						
						| 
							 | 
						                max_position_embeddings=self.max_position_embeddings, | 
					
					
						
						| 
							 | 
						                base=self.rope_theta, | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            scaling_type = self.config.rope_scaling["type"] | 
					
					
						
						| 
							 | 
						            if scaling_type == "longrope": | 
					
					
						
						| 
							 | 
						                self.rotary_emb = Phi3LongRoPEScaledRotaryEmbedding(self.head_dim, self.config) | 
					
					
						
						| 
							 | 
						            else: | 
					
					
						
						| 
							 | 
						                raise ValueError(f"Unknown RoPE scaling type {scaling_type}") | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def forward( | 
					
					
						
						| 
							 | 
						        self, | 
					
					
						
						| 
							 | 
						        hidden_states: torch.Tensor, | 
					
					
						
						| 
							 | 
						        attention_mask: Optional[torch.Tensor] = None, | 
					
					
						
						| 
							 | 
						        position_ids: Optional[torch.LongTensor] = None, | 
					
					
						
						| 
							 | 
						        past_key_value: Optional[Cache] = None, | 
					
					
						
						| 
							 | 
						        output_attentions: bool = False, | 
					
					
						
						| 
							 | 
						        use_cache: bool = False, | 
					
					
						
						| 
							 | 
						        cache_position: Optional[torch.LongTensor] = None, | 
					
					
						
						| 
							 | 
						    ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | 
					
					
						
						| 
							 | 
						        logger.warning_once("You are not running the flash-attention implementation, expect numerical differences.") | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        bsz, q_len, _ = hidden_states.size() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        qkv = self.qkv_proj(hidden_states) | 
					
					
						
						| 
							 | 
						        query_pos = self.num_heads * self.head_dim | 
					
					
						
						| 
							 | 
						        query_states = qkv[..., :query_pos] | 
					
					
						
						| 
							 | 
						        key_states = qkv[..., query_pos : query_pos + self.num_key_value_heads * self.head_dim] | 
					
					
						
						| 
							 | 
						        value_states = qkv[..., query_pos + self.num_key_value_heads * self.head_dim :] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) | 
					
					
						
						| 
							 | 
						        key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | 
					
					
						
						| 
							 | 
						        value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        kv_seq_len = key_states.shape[-2] | 
					
					
						
						| 
							 | 
						        if past_key_value is not None: | 
					
					
						
						| 
							 | 
						            if self.layer_idx is None: | 
					
					
						
						| 
							 | 
						                raise ValueError( | 
					
					
						
						| 
							 | 
						                    f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} " | 
					
					
						
						| 
							 | 
						                    "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class " | 
					
					
						
						| 
							 | 
						                    "with a layer index." | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						            kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) | 
					
					
						
						| 
							 | 
						        cos, sin = self.rotary_emb(value_states, position_ids, seq_len=kv_seq_len) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if past_key_value is not None: | 
					
					
						
						| 
							 | 
						            cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}   | 
					
					
						
						| 
							 | 
						            key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        key_states = repeat_kv(key_states, self.num_key_value_groups) | 
					
					
						
						| 
							 | 
						        value_states = repeat_kv(value_states, self.num_key_value_groups) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if attention_mask is not None: | 
					
					
						
						| 
							 | 
						            causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] | 
					
					
						
						| 
							 | 
						            attn_weights += causal_mask | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(value_states.dtype) | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        attn_output = torch.matmul(attn_weights, value_states) | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): | 
					
					
						
						| 
							 | 
						            raise ValueError( | 
					
					
						
						| 
							 | 
						                f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is" | 
					
					
						
						| 
							 | 
						                f" {attn_output.size()}" | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        attn_output = attn_output.transpose(1, 2).contiguous() | 
					
					
						
						| 
							 | 
						        attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        attn_output = self.o_proj(attn_output) | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if not output_attentions: | 
					
					
						
						| 
							 | 
						            attn_weights = None | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        return attn_output, attn_weights, past_key_value | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						class KPhi3FlashAttention2(KPhi3Attention): | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						    KPhi-3 flash attention module. This module inherits from `KPhi3Attention` as the weights of the module stays | 
					
					
						
						| 
							 | 
						    untouched. The only required change would be on the forward pass where it needs to correctly call the public API of | 
					
					
						
						| 
							 | 
						    flash attention and deal with padding tokens in case the input contains any of them. | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    def __init__(self, *args, **kwargs): | 
					
					
						
						| 
							 | 
						        super().__init__(*args, **kwargs) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def forward( | 
					
					
						
						| 
							 | 
						        self, | 
					
					
						
						| 
							 | 
						        hidden_states: torch.Tensor, | 
					
					
						
						| 
							 | 
						        attention_mask: Optional[torch.LongTensor] = None, | 
					
					
						
						| 
							 | 
						        position_ids: Optional[torch.LongTensor] = None, | 
					
					
						
						| 
							 | 
						        past_key_value: Optional[Cache] = None, | 
					
					
						
						| 
							 | 
						        output_attentions: bool = False, | 
					
					
						
						| 
							 | 
						        use_cache: bool = False, | 
					
					
						
						| 
							 | 
						        cache_position: Optional[torch.LongTensor] = None, | 
					
					
						
						| 
							 | 
						    ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        output_attentions = False | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        bsz, q_len, _ = hidden_states.size() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        qkv = self.qkv_proj(hidden_states) | 
					
					
						
						| 
							 | 
						        query_pos = self.num_heads * self.head_dim | 
					
					
						
						| 
							 | 
						        query_states = qkv[..., :query_pos] | 
					
					
						
						| 
							 | 
						        key_states = qkv[..., query_pos : query_pos + self.num_key_value_heads * self.head_dim] | 
					
					
						
						| 
							 | 
						        value_states = qkv[..., query_pos + self.num_key_value_heads * self.head_dim :] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) | 
					
					
						
						| 
							 | 
						        key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | 
					
					
						
						| 
							 | 
						        value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        kv_seq_len = key_states.shape[-2] | 
					
					
						
						| 
							 | 
						        if past_key_value is not None: | 
					
					
						
						| 
							 | 
						            if self.layer_idx is None: | 
					
					
						
						| 
							 | 
						                raise ValueError( | 
					
					
						
						| 
							 | 
						                    f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} " | 
					
					
						
						| 
							 | 
						                    "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class " | 
					
					
						
						| 
							 | 
						                    "with a layer index." | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						            kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        rotary_seq_len = ( | 
					
					
						
						| 
							 | 
						            max(kv_seq_len, position_ids[:, -1].max().item() + 1) if position_ids is not None else kv_seq_len | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        cos, sin = self.rotary_emb(value_states, seq_len=rotary_seq_len, position_ids=position_ids) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if past_key_value is not None: | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            cache_has_contents = past_key_value.get_seq_length(self.layer_idx) > 0 | 
					
					
						
						| 
							 | 
						            if ( | 
					
					
						
						| 
							 | 
						                getattr(self.config, "sliding_window", None) is not None | 
					
					
						
						| 
							 | 
						                and kv_seq_len > self.config.sliding_window | 
					
					
						
						| 
							 | 
						                and cache_has_contents | 
					
					
						
						| 
							 | 
						            ): | 
					
					
						
						| 
							 | 
						                slicing_tokens = 1 - self.config.sliding_window | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						                past_key = past_key_value[self.layer_idx][0] | 
					
					
						
						| 
							 | 
						                past_value = past_key_value[self.layer_idx][1] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						                past_key = past_key[:, :, slicing_tokens:, :].contiguous() | 
					
					
						
						| 
							 | 
						                past_value = past_value[:, :, slicing_tokens:, :].contiguous() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						                if past_key.shape[-2] != self.config.sliding_window - 1: | 
					
					
						
						| 
							 | 
						                    raise ValueError( | 
					
					
						
						| 
							 | 
						                        f"past key must have a shape of (`batch_size, num_heads, self.config.sliding_window-1, head_dim`), got" | 
					
					
						
						| 
							 | 
						                        f" {past_key.shape}" | 
					
					
						
						| 
							 | 
						                    ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						                if attention_mask is not None: | 
					
					
						
						| 
							 | 
						                    attention_mask = attention_mask[:, slicing_tokens:] | 
					
					
						
						| 
							 | 
						                    attention_mask = torch.cat([attention_mask, torch.ones_like(attention_mask[:, -1:])], dim=-1) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}   | 
					
					
						
						| 
							 | 
						            key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        key_states = repeat_kv(key_states, self.num_key_value_groups) | 
					
					
						
						| 
							 | 
						        value_states = repeat_kv(value_states, self.num_key_value_groups) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        attn_dropout = self.attention_dropout if self.training else 0.0 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if query_states.dtype == torch.float32: | 
					
					
						
						| 
							 | 
						            if torch.is_autocast_enabled(): | 
					
					
						
						| 
							 | 
						                target_dtype = torch.get_autocast_gpu_dtype() | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            elif hasattr(self.config, "_pre_quantization_dtype"): | 
					
					
						
						| 
							 | 
						                target_dtype = self.config._pre_quantization_dtype | 
					
					
						
						| 
							 | 
						            else: | 
					
					
						
						| 
							 | 
						                target_dtype = self.qkv_proj.weight.dtype | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            logger.warning_once( | 
					
					
						
						| 
							 | 
						                f"The input hidden states seems to be silently casted in float32, this might be related to" | 
					
					
						
						| 
							 | 
						                f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in" | 
					
					
						
						| 
							 | 
						                f" {target_dtype}." | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            query_states = query_states.to(target_dtype) | 
					
					
						
						| 
							 | 
						            key_states = key_states.to(target_dtype) | 
					
					
						
						| 
							 | 
						            value_states = value_states.to(target_dtype) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        query_states = query_states.transpose(1, 2) | 
					
					
						
						| 
							 | 
						        key_states = key_states.transpose(1, 2) | 
					
					
						
						| 
							 | 
						        value_states = value_states.transpose(1, 2) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        attn_output = _flash_attention_forward( | 
					
					
						
						| 
							 | 
						            query_states, | 
					
					
						
						| 
							 | 
						            key_states, | 
					
					
						
						| 
							 | 
						            value_states, | 
					
					
						
						| 
							 | 
						            attention_mask, | 
					
					
						
						| 
							 | 
						            q_len, | 
					
					
						
						| 
							 | 
						            position_ids=position_ids, | 
					
					
						
						| 
							 | 
						            dropout=attn_dropout, | 
					
					
						
						| 
							 | 
						            sliding_window=getattr(self.config, "sliding_window", None), | 
					
					
						
						| 
							 | 
						            use_top_left_mask=self._flash_attn_uses_top_left_mask, | 
					
					
						
						| 
							 | 
						            is_causal=self.is_causal, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous() | 
					
					
						
						| 
							 | 
						        attn_output = self.o_proj(attn_output) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if not output_attentions: | 
					
					
						
						| 
							 | 
						            attn_weights = None | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        return attn_output, attn_weights, past_key_value | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						class KPhi3SdpaAttention(KPhi3Attention): | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						    Phi3 attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from | 
					
					
						
						| 
							 | 
						    `Phi3Attention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to | 
					
					
						
						| 
							 | 
						    SDPA API. | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    def forward( | 
					
					
						
						| 
							 | 
						        self, | 
					
					
						
						| 
							 | 
						        hidden_states: torch.Tensor, | 
					
					
						
						| 
							 | 
						        attention_mask: Optional[torch.Tensor] = None, | 
					
					
						
						| 
							 | 
						        position_ids: Optional[torch.LongTensor] = None, | 
					
					
						
						| 
							 | 
						        past_key_value: Optional[Cache] = None, | 
					
					
						
						| 
							 | 
						        output_attentions: bool = False, | 
					
					
						
						| 
							 | 
						        use_cache: bool = False, | 
					
					
						
						| 
							 | 
						        cache_position: Optional[torch.LongTensor] = None, | 
					
					
						
						| 
							 | 
						    ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | 
					
					
						
						| 
							 | 
						        if output_attentions: | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            logger.warning_once( | 
					
					
						
						| 
							 | 
						                "Phi3Model is using Phi3SdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, " | 
					
					
						
						| 
							 | 
						                'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						            return super().forward( | 
					
					
						
						| 
							 | 
						                hidden_states=hidden_states, | 
					
					
						
						| 
							 | 
						                attention_mask=attention_mask, | 
					
					
						
						| 
							 | 
						                position_ids=position_ids, | 
					
					
						
						| 
							 | 
						                past_key_value=past_key_value, | 
					
					
						
						| 
							 | 
						                output_attentions=output_attentions, | 
					
					
						
						| 
							 | 
						                use_cache=use_cache, | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        bsz, q_len, _ = hidden_states.size() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        qkv = self.qkv_proj(hidden_states) | 
					
					
						
						| 
							 | 
						        query_pos = self.num_heads * self.head_dim | 
					
					
						
						| 
							 | 
						        query_states = qkv[..., :query_pos] | 
					
					
						
						| 
							 | 
						        key_states = qkv[..., query_pos : query_pos + self.num_key_value_heads * self.head_dim] | 
					
					
						
						| 
							 | 
						        value_states = qkv[..., query_pos + self.num_key_value_heads * self.head_dim :] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) | 
					
					
						
						| 
							 | 
						        key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | 
					
					
						
						| 
							 | 
						        value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        kv_seq_len = key_states.shape[-2] | 
					
					
						
						| 
							 | 
						        if past_key_value is not None: | 
					
					
						
						| 
							 | 
						            kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) | 
					
					
						
						| 
							 | 
						        cos, sin = self.rotary_emb(value_states, position_ids, seq_len=kv_seq_len) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if past_key_value is not None: | 
					
					
						
						| 
							 | 
						            cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}   | 
					
					
						
						| 
							 | 
						            key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        key_states = repeat_kv(key_states, self.num_key_value_groups) | 
					
					
						
						| 
							 | 
						        value_states = repeat_kv(value_states, self.num_key_value_groups) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        causal_mask = attention_mask | 
					
					
						
						| 
							 | 
						        if attention_mask is not None: | 
					
					
						
						| 
							 | 
						            causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        if query_states.device.type == "cuda" and attention_mask is not None: | 
					
					
						
						| 
							 | 
						            query_states = query_states.contiguous() | 
					
					
						
						| 
							 | 
						            key_states = key_states.contiguous() | 
					
					
						
						| 
							 | 
						            value_states = value_states.contiguous() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        is_causal = True if causal_mask is None and q_len > 1 else False | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        attn_output = torch.nn.functional.scaled_dot_product_attention( | 
					
					
						
						| 
							 | 
						            query_states, | 
					
					
						
						| 
							 | 
						            key_states, | 
					
					
						
						| 
							 | 
						            value_states, | 
					
					
						
						| 
							 | 
						            attn_mask=causal_mask, | 
					
					
						
						| 
							 | 
						            dropout_p=self.attention_dropout if self.training else 0.0, | 
					
					
						
						| 
							 | 
						            is_causal=is_causal, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        attn_output = attn_output.transpose(1, 2).contiguous() | 
					
					
						
						| 
							 | 
						        attn_output = attn_output.view(bsz, q_len, self.hidden_size) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        attn_output = self.o_proj(attn_output) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        return attn_output, None, past_key_value | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						KPHI3_ATTENTION_CLASSES = { | 
					
					
						
						| 
							 | 
						    "eager": KPhi3Attention, | 
					
					
						
						| 
							 | 
						    "flash_attention_2": KPhi3FlashAttention2, | 
					
					
						
						| 
							 | 
						    "sdpa": KPhi3SdpaAttention, | 
					
					
						
						| 
							 | 
						} | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						class KPhi3DecoderLayer(nn.Module): | 
					
					
						
						| 
							 | 
						    def __init__(self, config: KPhi3Config, layer_idx: int): | 
					
					
						
						| 
							 | 
						        super().__init__() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        self.config = config | 
					
					
						
						| 
							 | 
						        self.self_attn = KPHI3_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx=layer_idx) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        self.mlp = KPhi3MLP(config) | 
					
					
						
						| 
							 | 
						        self.input_layernorm = Phi3RMSNorm(config.hidden_size, eps=config.rms_norm_eps) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        self.resid_attn_dropout = nn.Dropout(config.resid_pdrop) | 
					
					
						
						| 
							 | 
						        self.resid_mlp_dropout = nn.Dropout(config.resid_pdrop) | 
					
					
						
						| 
							 | 
						        self.post_attention_layernorm = Phi3RMSNorm(config.hidden_size, eps=config.rms_norm_eps) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def forward( | 
					
					
						
						| 
							 | 
						        self, | 
					
					
						
						| 
							 | 
						        hidden_states: torch.Tensor, | 
					
					
						
						| 
							 | 
						        attention_mask: Optional[torch.Tensor] = None, | 
					
					
						
						| 
							 | 
						        position_ids: Optional[torch.LongTensor] = None, | 
					
					
						
						| 
							 | 
						        past_key_value: Optional[Tuple[torch.Tensor]] = None, | 
					
					
						
						| 
							 | 
						        output_attentions: Optional[bool] = False, | 
					
					
						
						| 
							 | 
						        use_cache: Optional[bool] = False, | 
					
					
						
						| 
							 | 
						        cache_position: Optional[torch.LongTensor] = None, | 
					
					
						
						| 
							 | 
						        **kwargs, | 
					
					
						
						| 
							 | 
						    ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: | 
					
					
						
						| 
							 | 
						        """ | 
					
					
						
						| 
							 | 
						        Args: | 
					
					
						
						| 
							 | 
						            hidden_states (`torch.FloatTensor`): | 
					
					
						
						| 
							 | 
						                input to the layer of shape `(batch, seq_len, embed_dim)` | 
					
					
						
						| 
							 | 
						            attention_mask (`torch.FloatTensor`, *optional*): attention mask of size | 
					
					
						
						| 
							 | 
						                `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. | 
					
					
						
						| 
							 | 
						            position_ids (`torch.LongTensor` of shape `({0})`, *optional*): | 
					
					
						
						| 
							 | 
						                Indices of positions of each input sequence tokens in the position embeddings. Selected in the range | 
					
					
						
						| 
							 | 
						                `[0, config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids) | 
					
					
						
						| 
							 | 
						            output_attentions (`bool`, *optional*): | 
					
					
						
						| 
							 | 
						                Whether or not to return the attentions tensors of all attention layers. See `attentions` under | 
					
					
						
						| 
							 | 
						                returned tensors for more detail. | 
					
					
						
						| 
							 | 
						            use_cache (`bool`, *optional*): | 
					
					
						
						| 
							 | 
						                If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding | 
					
					
						
						| 
							 | 
						                (see `past_key_values`). | 
					
					
						
						| 
							 | 
						            past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states | 
					
					
						
						| 
							 | 
						            cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): | 
					
					
						
						| 
							 | 
						                Indices depicting the position of the input sequence tokens in the sequence | 
					
					
						
						| 
							 | 
						            kwargs (`dict`, *optional*): | 
					
					
						
						| 
							 | 
						                Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code | 
					
					
						
						| 
							 | 
						                into the model | 
					
					
						
						| 
							 | 
						        """ | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        residual = hidden_states | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        hidden_states = self.input_layernorm(hidden_states) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        attn_outputs, self_attn_weights, present_key_value = self.self_attn( | 
					
					
						
						| 
							 | 
						            hidden_states=hidden_states, | 
					
					
						
						| 
							 | 
						            attention_mask=attention_mask, | 
					
					
						
						| 
							 | 
						            position_ids=position_ids, | 
					
					
						
						| 
							 | 
						            past_key_value=past_key_value, | 
					
					
						
						| 
							 | 
						            output_attentions=output_attentions, | 
					
					
						
						| 
							 | 
						            use_cache=use_cache, | 
					
					
						
						| 
							 | 
						            cache_position=cache_position, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        hidden_states = residual + self.resid_attn_dropout(attn_outputs) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        residual = hidden_states | 
					
					
						
						| 
							 | 
						        hidden_states = self.post_attention_layernorm(hidden_states) | 
					
					
						
						| 
							 | 
						        hidden_states = self.mlp(hidden_states) | 
					
					
						
						| 
							 | 
						        hidden_states = residual + self.resid_mlp_dropout(hidden_states) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        outputs = (hidden_states,) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if output_attentions: | 
					
					
						
						| 
							 | 
						            outputs += (self_attn_weights,) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if use_cache: | 
					
					
						
						| 
							 | 
						            outputs += (present_key_value,) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        return outputs | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						KPHI3_START_DOCSTRING = r""" | 
					
					
						
						| 
							 | 
						    This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the | 
					
					
						
						| 
							 | 
						    library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads | 
					
					
						
						| 
							 | 
						    etc.) | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						    This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. | 
					
					
						
						| 
							 | 
						    Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage | 
					
					
						
						| 
							 | 
						    and behavior. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						    Parameters: | 
					
					
						
						| 
							 | 
						        config ([`KPhi3Config`]): | 
					
					
						
						| 
							 | 
						            Model configuration class with all the parameters of the model. Initializing with a config file does not | 
					
					
						
						| 
							 | 
						            load the weights associated with the model, only the configuration. Check out the | 
					
					
						
						| 
							 | 
						            [`~PreTrainedModel.from_pretrained`] method to load the model weights. | 
					
					
						
						| 
							 | 
						""" | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						@add_start_docstrings( | 
					
					
						
						| 
							 | 
						    "The bare Phi-3 model outputting raw hidden-states without any specific head on top.", | 
					
					
						
						| 
							 | 
						    KPHI3_START_DOCSTRING, | 
					
					
						
						| 
							 | 
						) | 
					
					
						
						| 
							 | 
						class KPhi3PreTrainedModel(PreTrainedModel, GenerationMixin): | 
					
					
						
						| 
							 | 
						    config_class = KPhi3Config | 
					
					
						
						| 
							 | 
						    base_model_prefix = "model" | 
					
					
						
						| 
							 | 
						    supports_gradient_checkpointing = True | 
					
					
						
						| 
							 | 
						    _no_split_modules = ["KPhi3DecoderLayer"] | 
					
					
						
						| 
							 | 
						    _skip_keys_device_placement = "past_key_values" | 
					
					
						
						| 
							 | 
						    _supports_flash_attn_2 = True | 
					
					
						
						| 
							 | 
						    _supports_sdpa = False | 
					
					
						
						| 
							 | 
						    _supports_cache_class = True | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    _version = "1.0.0" | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def _init_weights(self, module): | 
					
					
						
						| 
							 | 
						        std = self.config.initializer_range | 
					
					
						
						| 
							 | 
						        if isinstance(module, nn.Linear): | 
					
					
						
						| 
							 | 
						            module.weight.data.normal_(mean=0.0, std=std) | 
					
					
						
						| 
							 | 
						            if module.bias is not None: | 
					
					
						
						| 
							 | 
						                module.bias.data.zero_() | 
					
					
						
						| 
							 | 
						        elif isinstance(module, nn.Embedding): | 
					
					
						
						| 
							 | 
						            module.weight.data.normal_(mean=0.0, std=std) | 
					
					
						
						| 
							 | 
						            if module.padding_idx is not None: | 
					
					
						
						| 
							 | 
						                module.weight.data[module.padding_idx].zero_() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						KPHI3_INPUTS_DOCSTRING = r""" | 
					
					
						
						| 
							 | 
						    Args: | 
					
					
						
						| 
							 | 
						        input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): | 
					
					
						
						| 
							 | 
						            Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide | 
					
					
						
						| 
							 | 
						            it. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						            Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | 
					
					
						
						| 
							 | 
						            [`PreTrainedTokenizer.__call__`] for details. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						            [What are input IDs?](../glossary#input-ids) | 
					
					
						
						| 
							 | 
						        attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): | 
					
					
						
						| 
							 | 
						            Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						            - 1 for tokens that are **not masked**, | 
					
					
						
						| 
							 | 
						            - 0 for tokens that are **masked**. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						            [What are attention masks?](../glossary#attention-mask) | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						            Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | 
					
					
						
						| 
							 | 
						            [`PreTrainedTokenizer.__call__`] for details. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						            If `past_key_values` is used, optionally only the last `input_ids` have to be input (see | 
					
					
						
						| 
							 | 
						            `past_key_values`). | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						            If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] | 
					
					
						
						| 
							 | 
						            and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more | 
					
					
						
						| 
							 | 
						            information on the default strategy. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						            - 1 indicates the head is **not masked**, | 
					
					
						
						| 
							 | 
						            - 0 indicates the head is **masked**. | 
					
					
						
						| 
							 | 
						        position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | 
					
					
						
						| 
							 | 
						            Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, | 
					
					
						
						| 
							 | 
						            config.n_positions - 1]`. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						            [What are position IDs?](../glossary#position-ids) | 
					
					
						
						| 
							 | 
						        past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*): | 
					
					
						
						| 
							 | 
						            Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention | 
					
					
						
						| 
							 | 
						            blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values` | 
					
					
						
						| 
							 | 
						            returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						            Two formats are allowed: | 
					
					
						
						| 
							 | 
						            - a [`~cache_utils.Cache`] instance; | 
					
					
						
						| 
							 | 
						            - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of | 
					
					
						
						| 
							 | 
						            shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy | 
					
					
						
						| 
							 | 
						            cache format. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						            The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the | 
					
					
						
						| 
							 | 
						            legacy cache format will be returned. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						            If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't | 
					
					
						
						| 
							 | 
						            have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids` | 
					
					
						
						| 
							 | 
						            of shape `(batch_size, sequence_length)`. | 
					
					
						
						| 
							 | 
						        inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): | 
					
					
						
						| 
							 | 
						            Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This | 
					
					
						
						| 
							 | 
						            is useful if you want more control over how to convert `input_ids` indices into associated vectors than the | 
					
					
						
						| 
							 | 
						            model's internal embedding lookup matrix. | 
					
					
						
						| 
							 | 
						        use_cache (`bool`, *optional*): | 
					
					
						
						| 
							 | 
						            If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see | 
					
					
						
						| 
							 | 
						            `past_key_values`). | 
					
					
						
						| 
							 | 
						        output_attentions (`bool`, *optional*): | 
					
					
						
						| 
							 | 
						            Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | 
					
					
						
						| 
							 | 
						            tensors for more detail. | 
					
					
						
						| 
							 | 
						        output_hidden_states (`bool`, *optional*): | 
					
					
						
						| 
							 | 
						            Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | 
					
					
						
						| 
							 | 
						            more detail. | 
					
					
						
						| 
							 | 
						        return_dict (`bool`, *optional*): | 
					
					
						
						| 
							 | 
						            Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | 
					
					
						
						| 
							 | 
						        cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): | 
					
					
						
						| 
							 | 
						            Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`, | 
					
					
						
						| 
							 | 
						            this tensor is not affected by padding. It is used to update the cache in the correct position and to infer | 
					
					
						
						| 
							 | 
						            the complete sequence length. | 
					
					
						
						| 
							 | 
						""" | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						@add_start_docstrings( | 
					
					
						
						| 
							 | 
						    "The bare KPhi-3 model outputting raw hidden-states without any specific head on top.", | 
					
					
						
						| 
							 | 
						    KPHI3_START_DOCSTRING, | 
					
					
						
						| 
							 | 
						) | 
					
					
						
						| 
							 | 
						class KPhi3Model(KPhi3PreTrainedModel): | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						    Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`KPhi3DecoderLayer`] | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						    Args: | 
					
					
						
						| 
							 | 
						        config: KPhi3Config | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def __init__(self, config: KPhi3Config): | 
					
					
						
						| 
							 | 
						        super().__init__(config) | 
					
					
						
						| 
							 | 
						        self.padding_idx = config.pad_token_id | 
					
					
						
						| 
							 | 
						        self.vocab_size = config.vocab_size | 
					
					
						
						| 
							 | 
						        self.activation_fn = ACT2FN[config.hidden_act] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        self.embed_tokens = nn.Embedding(config.vocab_size, config.embed_size, self.padding_idx) | 
					
					
						
						| 
							 | 
						        if config.embed_size != config.hidden_size: | 
					
					
						
						| 
							 | 
						            self.embed_to_hidden = GroupedPointwiseConvolutionBlock(config.embed_size, config.hidden_size, config.min_channels_per_group) | 
					
					
						
						| 
							 | 
						        self.embed_dropout = nn.Dropout(config.embd_pdrop) | 
					
					
						
						| 
							 | 
						        self.layers = nn.ModuleList( | 
					
					
						
						| 
							 | 
						            [KPhi3DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						        self._attn_implementation = config._attn_implementation | 
					
					
						
						| 
							 | 
						        self.norm = Phi3RMSNorm(config.hidden_size, eps=config.rms_norm_eps) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        self.gradient_checkpointing = False | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        self.post_init() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def get_input_embeddings(self): | 
					
					
						
						| 
							 | 
						        return self.embed_tokens | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def set_input_embeddings(self, value): | 
					
					
						
						| 
							 | 
						        self.embed_tokens = value | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    @add_start_docstrings_to_model_forward(KPHI3_INPUTS_DOCSTRING) | 
					
					
						
						| 
							 | 
						    def forward( | 
					
					
						
						| 
							 | 
						        self, | 
					
					
						
						| 
							 | 
						        input_ids: torch.LongTensor = None, | 
					
					
						
						| 
							 | 
						        attention_mask: Optional[torch.Tensor] = None, | 
					
					
						
						| 
							 | 
						        position_ids: Optional[torch.LongTensor] = None, | 
					
					
						
						| 
							 | 
						        past_key_values: Optional[List[torch.FloatTensor]] = None, | 
					
					
						
						| 
							 | 
						        inputs_embeds: Optional[torch.FloatTensor] = None, | 
					
					
						
						| 
							 | 
						        use_cache: Optional[bool] = None, | 
					
					
						
						| 
							 | 
						        output_attentions: Optional[bool] = None, | 
					
					
						
						| 
							 | 
						        output_hidden_states: Optional[bool] = None, | 
					
					
						
						| 
							 | 
						        return_dict: Optional[bool] = None, | 
					
					
						
						| 
							 | 
						        cache_position: Optional[torch.LongTensor] = None, | 
					
					
						
						| 
							 | 
						    ) -> Union[Tuple, BaseModelOutputWithPast]: | 
					
					
						
						| 
							 | 
						        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | 
					
					
						
						| 
							 | 
						        output_hidden_states = ( | 
					
					
						
						| 
							 | 
						            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						        use_cache = use_cache if use_cache is not None else self.config.use_cache | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        return_dict = return_dict if return_dict is not None else self.config.use_return_dict | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if (input_ids is None) ^ (inputs_embeds is not None): | 
					
					
						
						| 
							 | 
						            raise ValueError( | 
					
					
						
						| 
							 | 
						                "You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one" | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if self.gradient_checkpointing and self.training: | 
					
					
						
						| 
							 | 
						            if use_cache: | 
					
					
						
						| 
							 | 
						                logger.warning_once( | 
					
					
						
						| 
							 | 
						                    "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						                use_cache = False | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        use_legacy_cache = False | 
					
					
						
						| 
							 | 
						        if use_cache and not isinstance(past_key_values, Cache) and not self.training: | 
					
					
						
						| 
							 | 
						            use_legacy_cache = True | 
					
					
						
						| 
							 | 
						            past_key_values = DynamicCache.from_legacy_cache(past_key_values) | 
					
					
						
						| 
							 | 
						            logger.warning_once( | 
					
					
						
						| 
							 | 
						                "We detected that you are passing `past_key_values` as a tuple and this is deprecated and will be removed in v4.43. " | 
					
					
						
						| 
							 | 
						                "Please use an appropriate `Cache` class (https://huggingface.co/docs/transformers/v4.41.3/en/internal/generation_utils#transformers.Cache)" | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if inputs_embeds is None: | 
					
					
						
						| 
							 | 
						            inputs_embeds = self.embed_tokens(input_ids) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if cache_position is None: | 
					
					
						
						| 
							 | 
						            past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 | 
					
					
						
						| 
							 | 
						            cache_position = torch.arange( | 
					
					
						
						| 
							 | 
						                past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						        if position_ids is None: | 
					
					
						
						| 
							 | 
						            position_ids = cache_position.unsqueeze(0) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        causal_mask = self._update_causal_mask( | 
					
					
						
						| 
							 | 
						            attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						        inputs_embeds = self.embed_dropout(inputs_embeds) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if self.config.embed_size != self.config.hidden_size: | 
					
					
						
						| 
							 | 
						            hidden_states = self.embed_to_hidden(inputs_embeds) | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            hidden_states = inputs_embeds | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        all_hidden_states = () if output_hidden_states else None | 
					
					
						
						| 
							 | 
						        all_self_attns = () if output_attentions else None | 
					
					
						
						| 
							 | 
						        next_decoder_cache = None | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        for decoder_layer in self.layers: | 
					
					
						
						| 
							 | 
						            if output_hidden_states: | 
					
					
						
						| 
							 | 
						                all_hidden_states += (hidden_states,) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            if self.gradient_checkpointing and self.training: | 
					
					
						
						| 
							 | 
						                layer_outputs = self._gradient_checkpointing_func( | 
					
					
						
						| 
							 | 
						                    decoder_layer.__call__, | 
					
					
						
						| 
							 | 
						                    hidden_states, | 
					
					
						
						| 
							 | 
						                    causal_mask, | 
					
					
						
						| 
							 | 
						                    position_ids, | 
					
					
						
						| 
							 | 
						                    past_key_values, | 
					
					
						
						| 
							 | 
						                    output_attentions, | 
					
					
						
						| 
							 | 
						                    use_cache, | 
					
					
						
						| 
							 | 
						                    cache_position, | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						            else: | 
					
					
						
						| 
							 | 
						                layer_outputs = decoder_layer( | 
					
					
						
						| 
							 | 
						                    hidden_states, | 
					
					
						
						| 
							 | 
						                    attention_mask=causal_mask, | 
					
					
						
						| 
							 | 
						                    position_ids=position_ids, | 
					
					
						
						| 
							 | 
						                    past_key_value=past_key_values, | 
					
					
						
						| 
							 | 
						                    output_attentions=output_attentions, | 
					
					
						
						| 
							 | 
						                    use_cache=use_cache, | 
					
					
						
						| 
							 | 
						                    cache_position=cache_position, | 
					
					
						
						| 
							 | 
						                ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            hidden_states = layer_outputs[0] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            if use_cache: | 
					
					
						
						| 
							 | 
						                next_decoder_cache = layer_outputs[2 if output_attentions else 1] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            if output_attentions: | 
					
					
						
						| 
							 | 
						                all_self_attns += (layer_outputs[1],) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        hidden_states = self.norm(hidden_states) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        if output_hidden_states: | 
					
					
						
						| 
							 | 
						            all_hidden_states += (hidden_states,) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        next_cache = None | 
					
					
						
						| 
							 | 
						        if use_cache: | 
					
					
						
						| 
							 | 
						            next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache | 
					
					
						
						| 
							 | 
						        if not return_dict: | 
					
					
						
						| 
							 | 
						            return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None) | 
					
					
						
						| 
							 | 
						        return BaseModelOutputWithPast( | 
					
					
						
						| 
							 | 
						            last_hidden_state=hidden_states, | 
					
					
						
						| 
							 | 
						            past_key_values=next_cache, | 
					
					
						
						| 
							 | 
						            hidden_states=all_hidden_states, | 
					
					
						
						| 
							 | 
						            attentions=all_self_attns, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    def _update_causal_mask( | 
					
					
						
						| 
							 | 
						        self, | 
					
					
						
						| 
							 | 
						        attention_mask: torch.Tensor, | 
					
					
						
						| 
							 | 
						        input_tensor: torch.Tensor, | 
					
					
						
						| 
							 | 
						        cache_position: torch.Tensor, | 
					
					
						
						| 
							 | 
						        past_key_values: Cache, | 
					
					
						
						| 
							 | 
						        output_attentions: bool, | 
					
					
						
						| 
							 | 
						    ): | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if self.config._attn_implementation == "flash_attention_2": | 
					
					
						
						| 
							 | 
						            if attention_mask is not None and 0.0 in attention_mask: | 
					
					
						
						| 
							 | 
						                return attention_mask | 
					
					
						
						| 
							 | 
						            return None | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 | 
					
					
						
						| 
							 | 
						        using_static_cache = isinstance(past_key_values, StaticCache) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions: | 
					
					
						
						| 
							 | 
						            if AttentionMaskConverter._ignore_causal_mask_sdpa( | 
					
					
						
						| 
							 | 
						                attention_mask, | 
					
					
						
						| 
							 | 
						                inputs_embeds=input_tensor, | 
					
					
						
						| 
							 | 
						                past_key_values_length=past_seen_tokens, | 
					
					
						
						| 
							 | 
						                is_training=self.training, | 
					
					
						
						| 
							 | 
						            ): | 
					
					
						
						| 
							 | 
						                return None | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        dtype, device = input_tensor.dtype, input_tensor.device | 
					
					
						
						| 
							 | 
						        min_dtype = torch.finfo(dtype).min | 
					
					
						
						| 
							 | 
						        sequence_length = input_tensor.shape[1] | 
					
					
						
						| 
							 | 
						        if using_static_cache: | 
					
					
						
						| 
							 | 
						            target_length = past_key_values.get_max_length() | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            target_length = ( | 
					
					
						
						| 
							 | 
						                attention_mask.shape[-1] | 
					
					
						
						| 
							 | 
						                if isinstance(attention_mask, torch.Tensor) | 
					
					
						
						| 
							 | 
						                else past_seen_tokens + sequence_length + 1 | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        causal_mask = _prepare_4d_causal_attention_mask_with_cache_position( | 
					
					
						
						| 
							 | 
						            attention_mask, | 
					
					
						
						| 
							 | 
						            sequence_length=sequence_length, | 
					
					
						
						| 
							 | 
						            target_length=target_length, | 
					
					
						
						| 
							 | 
						            dtype=dtype, | 
					
					
						
						| 
							 | 
						            device=device, | 
					
					
						
						| 
							 | 
						            min_dtype=min_dtype, | 
					
					
						
						| 
							 | 
						            cache_position=cache_position, | 
					
					
						
						| 
							 | 
						            batch_size=input_tensor.shape[0], | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if ( | 
					
					
						
						| 
							 | 
						            self.config._attn_implementation == "sdpa" | 
					
					
						
						| 
							 | 
						            and attention_mask is not None | 
					
					
						
						| 
							 | 
						            and attention_mask.device.type == "cuda" | 
					
					
						
						| 
							 | 
						            and not output_attentions | 
					
					
						
						| 
							 | 
						        ): | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        return causal_mask | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						class KPhi3ForCausalLM(KPhi3PreTrainedModel): | 
					
					
						
						| 
							 | 
						    _tied_weights_keys = ["lm_head.weight"] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    def __init__(self, config): | 
					
					
						
						| 
							 | 
						        super().__init__(config) | 
					
					
						
						| 
							 | 
						        self.model = KPhi3Model(config) | 
					
					
						
						| 
							 | 
						        self.vocab_size = config.vocab_size | 
					
					
						
						| 
							 | 
						        if config.embed_size != config.hidden_size: | 
					
					
						
						| 
							 | 
						          self.hidden_to_embed = GroupedPointwiseConvolutionBlock(config.hidden_size, config.embed_size, config.min_channels_per_group) | 
					
					
						
						| 
							 | 
						        self.lm_head = nn.Linear(config.embed_size, config.vocab_size, bias=False) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        self.post_init() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    def get_input_embeddings(self): | 
					
					
						
						| 
							 | 
						        return self.model.embed_tokens | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    def set_input_embeddings(self, value): | 
					
					
						
						| 
							 | 
						        self.model.embed_tokens = value | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    def get_output_embeddings(self): | 
					
					
						
						| 
							 | 
						        return self.lm_head | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    def set_output_embeddings(self, new_embeddings): | 
					
					
						
						| 
							 | 
						        self.lm_head = new_embeddings | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    def set_decoder(self, decoder): | 
					
					
						
						| 
							 | 
						        self.model = decoder | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    def get_decoder(self): | 
					
					
						
						| 
							 | 
						        return self.model | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    @add_start_docstrings_to_model_forward(KPHI3_INPUTS_DOCSTRING) | 
					
					
						
						| 
							 | 
						    @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) | 
					
					
						
						| 
							 | 
						    def forward( | 
					
					
						
						| 
							 | 
						        self, | 
					
					
						
						| 
							 | 
						        input_ids: torch.LongTensor = None, | 
					
					
						
						| 
							 | 
						        attention_mask: Optional[torch.Tensor] = None, | 
					
					
						
						| 
							 | 
						        position_ids: Optional[torch.LongTensor] = None, | 
					
					
						
						| 
							 | 
						        past_key_values: Optional[List[torch.FloatTensor]] = None, | 
					
					
						
						| 
							 | 
						        inputs_embeds: Optional[torch.FloatTensor] = None, | 
					
					
						
						| 
							 | 
						        labels: Optional[torch.LongTensor] = None, | 
					
					
						
						| 
							 | 
						        use_cache: Optional[bool] = None, | 
					
					
						
						| 
							 | 
						        output_attentions: Optional[bool] = None, | 
					
					
						
						| 
							 | 
						        output_hidden_states: Optional[bool] = None, | 
					
					
						
						| 
							 | 
						        return_dict: Optional[bool] = None, | 
					
					
						
						| 
							 | 
						        cache_position: Optional[torch.LongTensor] = None, | 
					
					
						
						| 
							 | 
						    ) -> Union[Tuple, CausalLMOutputWithPast]: | 
					
					
						
						| 
							 | 
						        r""" | 
					
					
						
						| 
							 | 
						        Args: | 
					
					
						
						| 
							 | 
						            labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | 
					
					
						
						| 
							 | 
						                Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., | 
					
					
						
						| 
							 | 
						                config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored | 
					
					
						
						| 
							 | 
						                (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						        Returns: | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						        Example: | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						        ```python | 
					
					
						
						| 
							 | 
						        >>> from transformers import AutoTokenizer, Phi3ForCausalLM | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						        >>> model = KPhi3ForCausalLM.from_pretrained("microsoft/phi-3-mini-4k-instruct") | 
					
					
						
						| 
							 | 
						        >>> tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-3-mini-4k-instruct") | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						        >>> prompt = "This is an example script ." | 
					
					
						
						| 
							 | 
						        >>> inputs = tokenizer(prompt, return_tensors="pt") | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						        >>> # Generate | 
					
					
						
						| 
							 | 
						        >>> generate_ids = model.generate(inputs.input_ids, max_length=30) | 
					
					
						
						| 
							 | 
						        >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] | 
					
					
						
						| 
							 | 
						        'This is an example script .\n Certainly! Below is a sample script that demonstrates a simple task, such as calculating the sum' | 
					
					
						
						| 
							 | 
						        ```""" | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | 
					
					
						
						| 
							 | 
						        output_hidden_states = ( | 
					
					
						
						| 
							 | 
						            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						        return_dict = return_dict if return_dict is not None else self.config.use_return_dict | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        outputs = self.model( | 
					
					
						
						| 
							 | 
						            input_ids=input_ids, | 
					
					
						
						| 
							 | 
						            attention_mask=attention_mask, | 
					
					
						
						| 
							 | 
						            position_ids=position_ids, | 
					
					
						
						| 
							 | 
						            past_key_values=past_key_values, | 
					
					
						
						| 
							 | 
						            inputs_embeds=inputs_embeds, | 
					
					
						
						| 
							 | 
						            use_cache=use_cache, | 
					
					
						
						| 
							 | 
						            output_attentions=output_attentions, | 
					
					
						
						| 
							 | 
						            output_hidden_states=output_hidden_states, | 
					
					
						
						| 
							 | 
						            return_dict=return_dict, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        hidden_states = outputs[0] | 
					
					
						
						| 
							 | 
						        if self.config.embed_size != self.config.hidden_size: | 
					
					
						
						| 
							 | 
						            hidden_states = self.hidden_to_embed(hidden_states) | 
					
					
						
						| 
							 | 
						        logits = self.lm_head(hidden_states) | 
					
					
						
						| 
							 | 
						        logits = logits.float() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        loss = None | 
					
					
						
						| 
							 | 
						        if labels is not None: | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            shift_logits = logits[..., :-1, :].contiguous() | 
					
					
						
						| 
							 | 
						            shift_labels = labels[..., 1:].contiguous() | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            loss_fct = CrossEntropyLoss() | 
					
					
						
						| 
							 | 
						            shift_logits = shift_logits.view(-1, self.config.vocab_size) | 
					
					
						
						| 
							 | 
						            shift_labels = shift_labels.view(-1) | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            shift_labels = shift_labels.to(shift_logits.device) | 
					
					
						
						| 
							 | 
						            loss = loss_fct(shift_logits, shift_labels) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if not return_dict: | 
					
					
						
						| 
							 | 
						            output = (logits,) + outputs[1:] | 
					
					
						
						| 
							 | 
						            return (loss,) + output if loss is not None else output | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        return CausalLMOutputWithPast( | 
					
					
						
						| 
							 | 
						            loss=loss, | 
					
					
						
						| 
							 | 
						            logits=logits, | 
					
					
						
						| 
							 | 
						            past_key_values=outputs.past_key_values, | 
					
					
						
						| 
							 | 
						            hidden_states=outputs.hidden_states, | 
					
					
						
						| 
							 | 
						            attentions=outputs.attentions, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    def prepare_inputs_for_generation( | 
					
					
						
						| 
							 | 
						        self, | 
					
					
						
						| 
							 | 
						        input_ids, | 
					
					
						
						| 
							 | 
						        past_key_values=None, | 
					
					
						
						| 
							 | 
						        attention_mask=None, | 
					
					
						
						| 
							 | 
						        inputs_embeds=None, | 
					
					
						
						| 
							 | 
						        cache_position=None, | 
					
					
						
						| 
							 | 
						        position_ids=None, | 
					
					
						
						| 
							 | 
						        use_cache=True, | 
					
					
						
						| 
							 | 
						        **kwargs, | 
					
					
						
						| 
							 | 
						    ): | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        if past_key_values is not None: | 
					
					
						
						| 
							 | 
						            if inputs_embeds is not None:   | 
					
					
						
						| 
							 | 
						                input_ids = input_ids[:, -cache_position.shape[0] :] | 
					
					
						
						| 
							 | 
						            elif input_ids.shape[1] != cache_position.shape[0]:   | 
					
					
						
						| 
							 | 
						                input_ids = input_ids[:, cache_position] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if attention_mask is not None and position_ids is None: | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            position_ids = attention_mask.long().cumsum(-1) - 1 | 
					
					
						
						| 
							 | 
						            position_ids.masked_fill_(attention_mask == 0, 1) | 
					
					
						
						| 
							 | 
						            if past_key_values: | 
					
					
						
						| 
							 | 
						                position_ids = position_ids[:, -input_ids.shape[1] :] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						                 | 
					
					
						
						| 
							 | 
						                position_ids = position_ids.clone(memory_format=torch.contiguous_format) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        if inputs_embeds is not None and cache_position[0] == 0: | 
					
					
						
						| 
							 | 
						            model_inputs = {"inputs_embeds": inputs_embeds, "input_ids": None} | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            model_inputs = {"input_ids": input_ids.clone(memory_format=torch.contiguous_format), "inputs_embeds": None} | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if isinstance(past_key_values, StaticCache) and attention_mask.ndim == 2: | 
					
					
						
						| 
							 | 
						            if model_inputs["inputs_embeds"] is not None: | 
					
					
						
						| 
							 | 
						                batch_size, sequence_length, _ = model_inputs["inputs_embeds"].shape | 
					
					
						
						| 
							 | 
						                device = model_inputs["inputs_embeds"].device | 
					
					
						
						| 
							 | 
						            else: | 
					
					
						
						| 
							 | 
						                batch_size, sequence_length = model_inputs["input_ids"].shape | 
					
					
						
						| 
							 | 
						                device = model_inputs["input_ids"].device | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            dtype = self.lm_head.weight.dtype | 
					
					
						
						| 
							 | 
						            min_dtype = torch.finfo(dtype).min | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            attention_mask = _prepare_4d_causal_attention_mask_with_cache_position( | 
					
					
						
						| 
							 | 
						                attention_mask, | 
					
					
						
						| 
							 | 
						                sequence_length=sequence_length, | 
					
					
						
						| 
							 | 
						                target_length=past_key_values.get_max_length(), | 
					
					
						
						| 
							 | 
						                dtype=dtype, | 
					
					
						
						| 
							 | 
						                device=device, | 
					
					
						
						| 
							 | 
						                min_dtype=min_dtype, | 
					
					
						
						| 
							 | 
						                cache_position=cache_position, | 
					
					
						
						| 
							 | 
						                batch_size=batch_size, | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        model_inputs.update( | 
					
					
						
						| 
							 | 
						            { | 
					
					
						
						| 
							 | 
						                "position_ids": position_ids, | 
					
					
						
						| 
							 | 
						                "cache_position": cache_position, | 
					
					
						
						| 
							 | 
						                "past_key_values": past_key_values, | 
					
					
						
						| 
							 | 
						                "use_cache": use_cache, | 
					
					
						
						| 
							 | 
						                "attention_mask": attention_mask, | 
					
					
						
						| 
							 | 
						            } | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						        return model_inputs | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						@add_start_docstrings( | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						    The [`KPhi3Model`] with a sequence classification head on top (linear layer). | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						    [`KPhi3ForSequenceClassification`] uses the last token in order to do the classification, as other causal models | 
					
					
						
						| 
							 | 
						    (e.g. GPT-2) do. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						    Since it does classification on the last token, it requires to know the position of the last token. If a | 
					
					
						
						| 
							 | 
						    `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If | 
					
					
						
						| 
							 | 
						    no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the | 
					
					
						
						| 
							 | 
						    padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in | 
					
					
						
						| 
							 | 
						    each row of the batch). | 
					
					
						
						| 
							 | 
						    """, | 
					
					
						
						| 
							 | 
						    KPHI3_START_DOCSTRING, | 
					
					
						
						| 
							 | 
						) | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						class KPhi3ForSequenceClassification(KPhi3PreTrainedModel): | 
					
					
						
						| 
							 | 
						    def __init__(self, config): | 
					
					
						
						| 
							 | 
						        super().__init__(config) | 
					
					
						
						| 
							 | 
						        self.num_labels = config.num_labels | 
					
					
						
						| 
							 | 
						        self.model = KPhi3Model(config) | 
					
					
						
						| 
							 | 
						        self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        self.post_init() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def get_input_embeddings(self): | 
					
					
						
						| 
							 | 
						        return self.model.embed_tokens | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def set_input_embeddings(self, value): | 
					
					
						
						| 
							 | 
						        self.model.embed_tokens = value | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    @add_start_docstrings_to_model_forward(KPHI3_INPUTS_DOCSTRING) | 
					
					
						
						| 
							 | 
						    def forward( | 
					
					
						
						| 
							 | 
						        self, | 
					
					
						
						| 
							 | 
						        input_ids: Optional[torch.LongTensor] = None, | 
					
					
						
						| 
							 | 
						        attention_mask: Optional[torch.Tensor] = None, | 
					
					
						
						| 
							 | 
						        position_ids: Optional[torch.LongTensor] = None, | 
					
					
						
						| 
							 | 
						        past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None, | 
					
					
						
						| 
							 | 
						        inputs_embeds: Optional[torch.FloatTensor] = None, | 
					
					
						
						| 
							 | 
						        labels: Optional[torch.LongTensor] = None, | 
					
					
						
						| 
							 | 
						        use_cache: Optional[bool] = None, | 
					
					
						
						| 
							 | 
						        output_attentions: Optional[bool] = None, | 
					
					
						
						| 
							 | 
						        output_hidden_states: Optional[bool] = None, | 
					
					
						
						| 
							 | 
						        return_dict: Optional[bool] = None, | 
					
					
						
						| 
							 | 
						    ) -> Union[Tuple, SequenceClassifierOutputWithPast]: | 
					
					
						
						| 
							 | 
						        r""" | 
					
					
						
						| 
							 | 
						        labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | 
					
					
						
						| 
							 | 
						            Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., | 
					
					
						
						| 
							 | 
						            config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If | 
					
					
						
						| 
							 | 
						            `config.num_labels > 1` a classification loss is computed (Cross-Entropy). | 
					
					
						
						| 
							 | 
						        """ | 
					
					
						
						| 
							 | 
						        return_dict = return_dict if return_dict is not None else self.config.use_return_dict | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        model_outputs = self.model( | 
					
					
						
						| 
							 | 
						            input_ids, | 
					
					
						
						| 
							 | 
						            attention_mask=attention_mask, | 
					
					
						
						| 
							 | 
						            position_ids=position_ids, | 
					
					
						
						| 
							 | 
						            past_key_values=past_key_values, | 
					
					
						
						| 
							 | 
						            inputs_embeds=inputs_embeds, | 
					
					
						
						| 
							 | 
						            use_cache=use_cache, | 
					
					
						
						| 
							 | 
						            output_attentions=output_attentions, | 
					
					
						
						| 
							 | 
						            output_hidden_states=output_hidden_states, | 
					
					
						
						| 
							 | 
						            return_dict=return_dict, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						        hidden_states = model_outputs[0] | 
					
					
						
						| 
							 | 
						        logits = self.score(hidden_states) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if input_ids is not None: | 
					
					
						
						| 
							 | 
						            batch_size = input_ids.shape[0] | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            batch_size = inputs_embeds.shape[0] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if self.config.pad_token_id is None and batch_size != 1: | 
					
					
						
						| 
							 | 
						            raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.") | 
					
					
						
						| 
							 | 
						        if self.config.pad_token_id is None: | 
					
					
						
						| 
							 | 
						            sequence_lengths = -1 | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            if input_ids is not None: | 
					
					
						
						| 
							 | 
						                 | 
					
					
						
						| 
							 | 
						                sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1 | 
					
					
						
						| 
							 | 
						                sequence_lengths = sequence_lengths % input_ids.shape[-1] | 
					
					
						
						| 
							 | 
						                sequence_lengths = sequence_lengths.to(logits.device) | 
					
					
						
						| 
							 | 
						            else: | 
					
					
						
						| 
							 | 
						                sequence_lengths = -1 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        loss = None | 
					
					
						
						| 
							 | 
						        if labels is not None: | 
					
					
						
						| 
							 | 
						            labels = labels.to(logits.device) | 
					
					
						
						| 
							 | 
						            if self.config.problem_type is None: | 
					
					
						
						| 
							 | 
						                if self.num_labels == 1: | 
					
					
						
						| 
							 | 
						                    self.config.problem_type = "regression" | 
					
					
						
						| 
							 | 
						                elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): | 
					
					
						
						| 
							 | 
						                    self.config.problem_type = "single_label_classification" | 
					
					
						
						| 
							 | 
						                else: | 
					
					
						
						| 
							 | 
						                    self.config.problem_type = "multi_label_classification" | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            if self.config.problem_type == "regression": | 
					
					
						
						| 
							 | 
						                loss_fct = MSELoss() | 
					
					
						
						| 
							 | 
						                if self.num_labels == 1: | 
					
					
						
						| 
							 | 
						                    loss = loss_fct(pooled_logits.squeeze(), labels.squeeze()) | 
					
					
						
						| 
							 | 
						                else: | 
					
					
						
						| 
							 | 
						                    loss = loss_fct(pooled_logits, labels) | 
					
					
						
						| 
							 | 
						            elif self.config.problem_type == "single_label_classification": | 
					
					
						
						| 
							 | 
						                loss_fct = CrossEntropyLoss() | 
					
					
						
						| 
							 | 
						                loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1)) | 
					
					
						
						| 
							 | 
						            elif self.config.problem_type == "multi_label_classification": | 
					
					
						
						| 
							 | 
						                loss_fct = BCEWithLogitsLoss() | 
					
					
						
						| 
							 | 
						                loss = loss_fct(pooled_logits, labels) | 
					
					
						
						| 
							 | 
						        if not return_dict: | 
					
					
						
						| 
							 | 
						            output = (pooled_logits,) + model_outputs[1:] | 
					
					
						
						| 
							 | 
						            return ((loss,) + output) if loss is not None else output | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        return SequenceClassifierOutputWithPast( | 
					
					
						
						| 
							 | 
						            loss=loss, | 
					
					
						
						| 
							 | 
						            logits=pooled_logits, | 
					
					
						
						| 
							 | 
						            past_key_values=model_outputs.past_key_values, | 
					
					
						
						| 
							 | 
						            hidden_states=model_outputs.hidden_states, | 
					
					
						
						| 
							 | 
						            attentions=model_outputs.attentions, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						@add_start_docstrings( | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						    [`KPhi3Model`] with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for | 
					
					
						
						| 
							 | 
						    Named-Entity-Recognition (NER) tasks. | 
					
					
						
						| 
							 | 
						    """, | 
					
					
						
						| 
							 | 
						    KPHI3_START_DOCSTRING, | 
					
					
						
						| 
							 | 
						) | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						class KPhi3ForTokenClassification(KPhi3PreTrainedModel): | 
					
					
						
						| 
							 | 
						    def __init__(self, config: KPhi3Config): | 
					
					
						
						| 
							 | 
						        super().__init__(config) | 
					
					
						
						| 
							 | 
						        self.num_labels = config.num_labels | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        self.model = KPhi3Model(config) | 
					
					
						
						| 
							 | 
						        if hasattr(config, "classifier_dropout") and config.classifier_dropout is not None: | 
					
					
						
						| 
							 | 
						            classifier_dropout = config.classifier_dropout | 
					
					
						
						| 
							 | 
						        elif hasattr(config, "hidden_dropout") and config.hidden_dropout is not None: | 
					
					
						
						| 
							 | 
						            classifier_dropout = config.hidden_dropout | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            classifier_dropout = 0.1 | 
					
					
						
						| 
							 | 
						        self.dropout = nn.Dropout(classifier_dropout) | 
					
					
						
						| 
							 | 
						        self.classifier = nn.Linear(config.hidden_size, config.num_labels) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        self.post_init() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    @add_start_docstrings_to_model_forward(KPHI3_INPUTS_DOCSTRING) | 
					
					
						
						| 
							 | 
						    @add_code_sample_docstrings( | 
					
					
						
						| 
							 | 
						        checkpoint=_CHECKPOINT_FOR_DOC, | 
					
					
						
						| 
							 | 
						        output_type=TokenClassifierOutput, | 
					
					
						
						| 
							 | 
						        config_class=_CONFIG_FOR_DOC, | 
					
					
						
						| 
							 | 
						    ) | 
					
					
						
						| 
							 | 
						    def forward( | 
					
					
						
						| 
							 | 
						        self, | 
					
					
						
						| 
							 | 
						        input_ids: Optional[torch.LongTensor] = None, | 
					
					
						
						| 
							 | 
						        past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None, | 
					
					
						
						| 
							 | 
						        attention_mask: Optional[torch.Tensor] = None, | 
					
					
						
						| 
							 | 
						        inputs_embeds: Optional[torch.Tensor] = None, | 
					
					
						
						| 
							 | 
						        labels: Optional[torch.Tensor] = None, | 
					
					
						
						| 
							 | 
						        use_cache: Optional[bool] = None, | 
					
					
						
						| 
							 | 
						        output_attentions: Optional[bool] = None, | 
					
					
						
						| 
							 | 
						        output_hidden_states: Optional[bool] = None, | 
					
					
						
						| 
							 | 
						        return_dict: Optional[bool] = None, | 
					
					
						
						| 
							 | 
						        **deprecated_arguments, | 
					
					
						
						| 
							 | 
						    ) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]: | 
					
					
						
						| 
							 | 
						        r""" | 
					
					
						
						| 
							 | 
						        labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | 
					
					
						
						| 
							 | 
						            Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., | 
					
					
						
						| 
							 | 
						            config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If | 
					
					
						
						| 
							 | 
						            `config.num_labels > 1` a classification loss is computed (Cross-Entropy). | 
					
					
						
						| 
							 | 
						        """ | 
					
					
						
						| 
							 | 
						        return_dict = return_dict if return_dict is not None else self.config.use_return_dict | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        model_outputs = self.model( | 
					
					
						
						| 
							 | 
						            input_ids, | 
					
					
						
						| 
							 | 
						            past_key_values=past_key_values, | 
					
					
						
						| 
							 | 
						            attention_mask=attention_mask, | 
					
					
						
						| 
							 | 
						            inputs_embeds=inputs_embeds, | 
					
					
						
						| 
							 | 
						            use_cache=use_cache, | 
					
					
						
						| 
							 | 
						            output_attentions=output_attentions, | 
					
					
						
						| 
							 | 
						            output_hidden_states=output_hidden_states, | 
					
					
						
						| 
							 | 
						            return_dict=return_dict, | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        hidden_states = model_outputs[0] | 
					
					
						
						| 
							 | 
						        hidden_states = self.dropout(hidden_states) | 
					
					
						
						| 
							 | 
						        logits = self.classifier(hidden_states) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        loss = None | 
					
					
						
						| 
							 | 
						        if labels is not None: | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            labels = labels.to(logits.device) | 
					
					
						
						| 
							 | 
						            batch_size, seq_length = labels.shape | 
					
					
						
						| 
							 | 
						            loss_fct = CrossEntropyLoss() | 
					
					
						
						| 
							 | 
						            loss = loss_fct( | 
					
					
						
						| 
							 | 
						                logits.view(batch_size * seq_length, self.num_labels), labels.view(batch_size * seq_length) | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if not return_dict: | 
					
					
						
						| 
							 | 
						            output = (logits,) + model_outputs[2:] | 
					
					
						
						| 
							 | 
						            return ((loss,) + output) if loss is not None else output | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        return TokenClassifierOutput( | 
					
					
						
						| 
							 | 
						            loss=loss, | 
					
					
						
						| 
							 | 
						            logits=logits, | 
					
					
						
						| 
							 | 
						            hidden_states=model_outputs.hidden_states, | 
					
					
						
						| 
							 | 
						            attentions=model_outputs.attentions, | 
					
					
						
						| 
							 | 
						        ) |