Create handler.py
Browse files- handler.py +68 -0
handler.py
ADDED
|
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Dict, List, Any
|
| 2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
| 3 |
+
import torch
|
| 4 |
+
|
| 5 |
+
class EndpointHandler():
|
| 6 |
+
def __init__(self, path=""):
|
| 7 |
+
self.model = AutoModelForCausalLM.from_pretrained("chavinlo/gpt4-x-alpaca")
|
| 8 |
+
self.tokenizer = AutoTokenizer.from_pretrained("chavinlo/gpt4-x-alpaca")
|
| 9 |
+
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 10 |
+
self.model.to(self.device)
|
| 11 |
+
#quantization_config = BitsAndBytesConfig(llm_int8_enable_fp32_cpu_offload=True)
|
| 12 |
+
|
| 13 |
+
# device_map = {
|
| 14 |
+
# "transformer.word_embeddings": 0,
|
| 15 |
+
# "transformer.word_embeddings_layernorm": 0,
|
| 16 |
+
# "lm_head": "cpu",
|
| 17 |
+
# "transformer.h": 0,
|
| 18 |
+
# "transformer.ln_f": 0,
|
| 19 |
+
# }
|
| 20 |
+
#path = "anon8231489123/gpt4-x-alpaca-13b-native-4bit-128g"
|
| 21 |
+
|
| 22 |
+
# self.model = AutoModelForCausalLM.from_pretrained(
|
| 23 |
+
# path,
|
| 24 |
+
# device_map="auto",
|
| 25 |
+
# load_in_8bit=True,
|
| 26 |
+
# #kwargs="--wbits 4 --groupsize 128",
|
| 27 |
+
# #device_map=device_map,
|
| 28 |
+
# #quantization_config=quantization_config
|
| 29 |
+
# )
|
| 30 |
+
# self.tokenizer = AutoTokenizer.from_pretrained(path)
|
| 31 |
+
# self.pipeline = pipeline("conversational", model = self.model, tokenizer=self.tokenizer, trust_remote_code=True, device_map="auto", torch_dtype=torch.bfloat16)
|
| 32 |
+
|
| 33 |
+
#rep= "anon8231489123/gpt4-x-alpaca-13b-native-4bit-128g"
|
| 34 |
+
# tokenizer = AutoTokenizer.from_pretrained(rep)
|
| 35 |
+
#model = AutoModelForCausalLM.from_pretrained(rep)
|
| 36 |
+
|
| 37 |
+
# inputs = tokenizer(["Today is"], return_tensors="pt")
|
| 38 |
+
|
| 39 |
+
# reply_ids = model.generate(**inputs, max_new_tokens=590) # return_dict_in_generate=True, output_scores=True
|
| 40 |
+
# outputs = tokenizer.batch_decode(reply_ids, skip_special_tokens=True)[0]
|
| 41 |
+
# print(outputs)
|
| 42 |
+
|
| 43 |
+
#modelPath = "/"
|
| 44 |
+
|
| 45 |
+
#self.pipeline = pipeline("conversational", model=modelPath)
|
| 46 |
+
|
| 47 |
+
# Preload all the elements you are going to need at inference.
|
| 48 |
+
# pseudo:
|
| 49 |
+
# self.model= load_model(path)
|
| 50 |
+
print("end")
|
| 51 |
+
|
| 52 |
+
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
|
| 53 |
+
inputs = data.pop("inputs", data)
|
| 54 |
+
parameters = data.pop("parameters", None)
|
| 55 |
+
|
| 56 |
+
# preprocess
|
| 57 |
+
input_ids = self.tokenizer(inputs, return_tensors="pt").input_ids
|
| 58 |
+
|
| 59 |
+
# pass inputs with all kwargs in data
|
| 60 |
+
if parameters is not None:
|
| 61 |
+
outputs = self.model.generate(input_ids, **parameters)
|
| 62 |
+
else:
|
| 63 |
+
outputs = self.model.generate(input_ids)
|
| 64 |
+
|
| 65 |
+
# postprocess the prediction
|
| 66 |
+
prediction = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 67 |
+
|
| 68 |
+
return [{"generated_text": prediction}]
|