Antonin Raffin
commited on
Commit
·
7b17585
1
Parent(s):
c092c9a
Initial commit
Browse files- .gitattributes +1 -0
- README.md +67 -0
- args.yml +59 -0
- config.yml +27 -0
- env_kwargs.yml +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- tqc-MountainCarContinuous-v0.zip +3 -0
- tqc-MountainCarContinuous-v0/_stable_baselines3_version +1 -0
- tqc-MountainCarContinuous-v0/actor.optimizer.pth +3 -0
- tqc-MountainCarContinuous-v0/critic.optimizer.pth +3 -0
- tqc-MountainCarContinuous-v0/data +125 -0
- tqc-MountainCarContinuous-v0/policy.pth +3 -0
- tqc-MountainCarContinuous-v0/pytorch_variables.pth +3 -0
- tqc-MountainCarContinuous-v0/system_info.txt +7 -0
- train_eval_metrics.zip +3 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- MountainCarContinuous-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: TQC
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 76.40 +/- 38.49
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: MountainCarContinuous-v0
|
20 |
+
type: MountainCarContinuous-v0
|
21 |
+
---
|
22 |
+
|
23 |
+
# **TQC** Agent playing **MountainCarContinuous-v0**
|
24 |
+
This is a trained model of a **TQC** agent playing **MountainCarContinuous-v0**
|
25 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
|
26 |
+
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
|
27 |
+
|
28 |
+
The RL Zoo is a training framework for Stable Baselines3
|
29 |
+
reinforcement learning agents,
|
30 |
+
with hyperparameter optimization and pre-trained agents included.
|
31 |
+
|
32 |
+
## Usage (with SB3 RL Zoo)
|
33 |
+
|
34 |
+
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
|
35 |
+
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
|
36 |
+
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
|
37 |
+
|
38 |
+
```
|
39 |
+
# Download model and save it into the logs/ folder
|
40 |
+
python -m utils.load_from_hub --algo tqc --env MountainCarContinuous-v0 -orga sb3 -f logs/
|
41 |
+
python enjoy.py --algo tqc --env MountainCarContinuous-v0 -f logs/
|
42 |
+
```
|
43 |
+
|
44 |
+
## Training (with the RL Zoo)
|
45 |
+
```
|
46 |
+
python train.py --algo tqc --env MountainCarContinuous-v0 -f logs/
|
47 |
+
# Upload the model and generate video (when possible)
|
48 |
+
python -m utils.push_to_hub --algo tqc --env MountainCarContinuous-v0 -f logs/ -orga sb3
|
49 |
+
```
|
50 |
+
|
51 |
+
## Hyperparameters
|
52 |
+
```python
|
53 |
+
OrderedDict([('batch_size', 512),
|
54 |
+
('buffer_size', 50000),
|
55 |
+
('ent_coef', 0.1),
|
56 |
+
('gamma', 0.9999),
|
57 |
+
('gradient_steps', 32),
|
58 |
+
('learning_rate', 0.0003),
|
59 |
+
('learning_starts', 0),
|
60 |
+
('n_timesteps', 50000.0),
|
61 |
+
('policy', 'MlpPolicy'),
|
62 |
+
('policy_kwargs', 'dict(log_std_init=-3.67, net_arch=[64, 64])'),
|
63 |
+
('tau', 0.01),
|
64 |
+
('train_freq', 32),
|
65 |
+
('use_sde', True),
|
66 |
+
('normalize', False)])
|
67 |
+
```
|
args.yml
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - algo
|
3 |
+
- tqc
|
4 |
+
- - env
|
5 |
+
- MountainCarContinuous-v0
|
6 |
+
- - env_kwargs
|
7 |
+
- null
|
8 |
+
- - eval_episodes
|
9 |
+
- 10
|
10 |
+
- - eval_freq
|
11 |
+
- 10000
|
12 |
+
- - gym_packages
|
13 |
+
- []
|
14 |
+
- - hyperparams
|
15 |
+
- null
|
16 |
+
- - log_folder
|
17 |
+
- rl-trained-agents/
|
18 |
+
- - log_interval
|
19 |
+
- -1
|
20 |
+
- - n_evaluations
|
21 |
+
- 20
|
22 |
+
- - n_jobs
|
23 |
+
- 1
|
24 |
+
- - n_startup_trials
|
25 |
+
- 10
|
26 |
+
- - n_timesteps
|
27 |
+
- -1
|
28 |
+
- - n_trials
|
29 |
+
- 10
|
30 |
+
- - num_threads
|
31 |
+
- -1
|
32 |
+
- - optimize_hyperparameters
|
33 |
+
- false
|
34 |
+
- - pruner
|
35 |
+
- median
|
36 |
+
- - sampler
|
37 |
+
- tpe
|
38 |
+
- - save_freq
|
39 |
+
- -1
|
40 |
+
- - save_replay_buffer
|
41 |
+
- false
|
42 |
+
- - seed
|
43 |
+
- 1954841141
|
44 |
+
- - storage
|
45 |
+
- null
|
46 |
+
- - study_name
|
47 |
+
- null
|
48 |
+
- - tensorboard_log
|
49 |
+
- ''
|
50 |
+
- - trained_agent
|
51 |
+
- ''
|
52 |
+
- - truncate_last_trajectory
|
53 |
+
- true
|
54 |
+
- - uuid
|
55 |
+
- true
|
56 |
+
- - vec_env
|
57 |
+
- dummy
|
58 |
+
- - verbose
|
59 |
+
- 1
|
config.yml
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - batch_size
|
3 |
+
- 512
|
4 |
+
- - buffer_size
|
5 |
+
- 50000
|
6 |
+
- - ent_coef
|
7 |
+
- 0.1
|
8 |
+
- - gamma
|
9 |
+
- 0.9999
|
10 |
+
- - gradient_steps
|
11 |
+
- 32
|
12 |
+
- - learning_rate
|
13 |
+
- 0.0003
|
14 |
+
- - learning_starts
|
15 |
+
- 0
|
16 |
+
- - n_timesteps
|
17 |
+
- 50000.0
|
18 |
+
- - policy
|
19 |
+
- MlpPolicy
|
20 |
+
- - policy_kwargs
|
21 |
+
- dict(log_std_init=-3.67, net_arch=[64, 64])
|
22 |
+
- - tau
|
23 |
+
- 0.01
|
24 |
+
- - train_freq
|
25 |
+
- 32
|
26 |
+
- - use_sde
|
27 |
+
- true
|
env_kwargs.yml
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e6c2a92b42b84035cb3ac47c85a484f54ffa1fd2f0e1d6730b8c5349b9b53910
|
3 |
+
size 213406
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 76.3968701, "std_reward": 38.48772138614096, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-06-02T22:00:15.398974"}
|
tqc-MountainCarContinuous-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f9cb279639e9c952dcfeed85a2b4b4af602aff4876ffe6f6f26f5328ce87734d
|
3 |
+
size 287747
|
tqc-MountainCarContinuous-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.1a8
|
tqc-MountainCarContinuous-v0/actor.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e187ff10319596cd640eb0dc208537b5ba447b7016b142a20f2a5e0384a105d9
|
3 |
+
size 39675
|
tqc-MountainCarContinuous-v0/critic.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a5488beff2bb6559710ce0494cd8050951438ded8bfe24f3b7b04f2f0b536418
|
3 |
+
size 102941
|
tqc-MountainCarContinuous-v0/data
ADDED
@@ -0,0 +1,125 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gASVKgAAAAAAAACMGHNiM19jb250cmliLnRxYy5wb2xpY2llc5SMCVRRQ1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "sb3_contrib.tqc.policies",
|
6 |
+
"__doc__": "\n Policy class (with both actor and critic) for TQC.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the feature extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_quantiles: Number of quantiles for the critic.\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ",
|
7 |
+
"__init__": "<function TQCPolicy.__init__ at 0x7f86c2354710>",
|
8 |
+
"_build": "<function TQCPolicy._build at 0x7f86c23547a0>",
|
9 |
+
"_get_constructor_parameters": "<function TQCPolicy._get_constructor_parameters at 0x7f86c2354830>",
|
10 |
+
"reset_noise": "<function TQCPolicy.reset_noise at 0x7f86c23548c0>",
|
11 |
+
"make_actor": "<function TQCPolicy.make_actor at 0x7f86c2354950>",
|
12 |
+
"make_critic": "<function TQCPolicy.make_critic at 0x7f86c23549e0>",
|
13 |
+
"forward": "<function TQCPolicy.forward at 0x7f86c2354a70>",
|
14 |
+
"_predict": "<function TQCPolicy._predict at 0x7f86c2354b00>",
|
15 |
+
"set_training_mode": "<function TQCPolicy.set_training_mode at 0x7f86c2354b90>",
|
16 |
+
"__abstractmethods__": "frozenset()",
|
17 |
+
"_abc_impl": "<_abc_data object at 0x7f86c23b4690>"
|
18 |
+
},
|
19 |
+
"verbose": 1,
|
20 |
+
"policy_kwargs": {
|
21 |
+
"log_std_init": -3.67,
|
22 |
+
"net_arch": [
|
23 |
+
64,
|
24 |
+
64
|
25 |
+
],
|
26 |
+
"use_sde": true
|
27 |
+
},
|
28 |
+
"observation_space": {
|
29 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
30 |
+
":serialized:": "gASVhwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMA2xvd5SMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlGgGjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwKFlGgKiUMImpmZvylcj72UdJRijARoaWdolGgQaBJLAIWUaBSHlFKUKEsBSwKFlGgKiUMImpkZPylcjz2UdJRijA1ib3VuZGVkX2JlbG93lGgQaBJLAIWUaBSHlFKUKEsBSwKFlGgHjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiiUMCAQGUdJRijA1ib3VuZGVkX2Fib3ZllGgQaBJLAIWUaBSHlFKUKEsBSwKFlGgoiUMCAQGUdJRijApfbnBfcmFuZG9tlE6MBl9zaGFwZZRLAoWUdWIu",
|
31 |
+
"dtype": "float32",
|
32 |
+
"low": "[-1.2 -0.07]",
|
33 |
+
"high": "[0.6 0.07]",
|
34 |
+
"bounded_below": "[ True True]",
|
35 |
+
"bounded_above": "[ True True]",
|
36 |
+
"_np_random": null,
|
37 |
+
"_shape": [
|
38 |
+
2
|
39 |
+
]
|
40 |
+
},
|
41 |
+
"action_space": {
|
42 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
43 |
+
":serialized:": "gASVCwwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMA2xvd5SMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlGgGjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwGFlGgKiUMEAACAv5R0lGKMBGhpZ2iUaBBoEksAhZRoFIeUUpQoSwFLAYWUaAqJQwQAAIA/lHSUYowNYm91bmRlZF9iZWxvd5RoEGgSSwCFlGgUh5RSlChLAUsBhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDAQGUdJRijA1ib3VuZGVkX2Fib3ZllGgQaBJLAIWUaBSHlFKUKEsBSwGFlGgoiWgrdJRijApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBJfX3JhbmRvbXN0YXRlX2N0b3KUk5SMB01UMTk5MzeUhZRSlH2UKIwNYml0X2dlbmVyYXRvcpRoN4wFc3RhdGWUfZQojANrZXmUaBBoEksAhZRoFIeUUpQoSwFNcAKFlGgHjAJ1NJSJiIeUUpQoSwNoC05OTkr/////Sv////9LAHSUYolCwAkAAAAAAIBTwrOchwO1k3Lsq1vo5rLyz7aB2tUG72GhMU2ga7XM2RPmGJ90nHkvyKUbgMR5AUmeD0PkXeAYk5ITVczUSilk0giVvjTQnkRyegPwrb8Kc5t7PulgsQbadQNFC2591hZq6wQ0ZoO38/WlL2nvQmNDtVz3wndSzEZENy0IiW7Qjq53+xi2gE97nvlPMuwS2LmOXoWpGcquPXYtZytCgJ7F7scf9SIBXUvPJA/MGVJkRFeYcJ0K9RIXtela3jvE/0HPOrFftofdM9hYiaqizX97P8mUt2wPQx8xmX0bYJCrtwcdGUzeyPuOugD1z6ka3iX+IAalFvzQduPBTvXKQ9MBWnnfUFetzaqYhTrP0WHhMA/Ht9nWRUX4vUiuWi77gKSTLtizn2cHsqRyJMj43mOVvrbJtm3T5laAgDosou93H+ZNC0HiTVqmVP8Lsv3/JsoIWfaq43/tiUiTGgfVTTF1psbquA6tH5Icya9TC+0oH7X0htvTuZKBVDKM0C+fIAM8l/emTHKVm2ft/85WlYRpZ+XoFwvDLSCusSBQr4f7w/xdYy4GCKdeDDOfezLj5k6WvjminpO26pfQqfP9LJIYOUEgrwmoo5vMHp8a36i8kcQzwqUvi94rCQuS64xYFp7HcUF1aySvLmqGyXEyCeTa2GHwNpeYB9u4jyPRKocxbWSV4hOL16R9fH95KLmFfUaMD8zrZmLG5rLUfzMf1WOxNFwZpzInS+HWE1F4MWg2xcVst8upoi9ssNCNjtPbz1ley6m8DG7YZVNupay35yQ8/PAfu8uKRQsL7B4ArDFquqb66ABeDLPvviZ4c6y9Bi67Xye+uu6eNlYO/Boq5iiETBR9Kemi0T1eFf33JRNzywY9CJ1N9eTOb+3wxY/yK3iXhVISAMufwZby3YMCHwTAVr8o4ahkQaNipnYgwDvQT4XYuqBpmVAsUw41MjHfK43kXZ7UxPi/bB0FEr1H6UYynEiI2V3I7DDEsMFNEMyF3sA+J2YPBAGe9oh5woVr3lu3AeREERRPmD778jQMODrzkRfg4w7Zi1M+ozc9CW5Lim4SEBBFW6Q0ZKHiBgOBwE8pmXhOE1/4b4TsSX1+ZYlw/f1KJ/Doyf4YSKwzVGEdjTldkdS/lbivyQPaNIsxj4ggvb4u1CtbuK3vLbz6wSJwugR9g6TL1kkXqXR9H6xcRrB/5EQf0u+1EnjLN/GvsqKw2mvVrG/Vp7kINdL5dPO44b8Emce+3xqudjVdYf1J2QI56iTowjwYEK2NMLEnklukjknSLQDrqYlpFb0sx8/oKKXf9xVFD243YpO1XejusnBjhcKePsMmaqtTCh8MOXsSTQ+g3vDQeHxgc7LyqE/DtXwAt2Nmft5i2MJAiV1C8dszUjvdG0ItC9AYUxdQInTbakZGpO9lfldZKLOpuBfpMmYjosMX3Bylh5qUHtwPB6V+p2nMdGbKNFshf1v7Di6P/9oNGA/ZKCI4Cr8P/3/RJuAr8TQVDJyWE1UCRsrBeEDEoZzOm8mjDSYUVQC3/l9PkoCyZBMC3ynQWysYwNN+ThHNmCplKb6KFVFLfvVPHe3CkYDWCij8Ah8mHyyUkLeGRHU4YI3ssA8YLBsz2seUpJTi66EmJ9/X3qH2rWQ8yV3r3z0x8otWS8KXuh8JG6s9Rbjpx4koT3nWxAPW/xwrQcrUma4FMJcB6UJQIgU0saTe0xc1Wa64UXejfFvhXhPUgBgh8F3IRUeEghk4T8kRjv11pDDyeNgS1DpjBnqQ0IFh+uOrY6CUhNxF3AOYg0vjaujoedtaAtlDwJ78SI9UG1YfCG8ZQcrUU043NHNeBPXMoSD5YCKB64rhBUjF0hMzhi9TJi+lAm4l37EYPWejsFggpd1XhoOWxGdZIyZL7NPJO8LT5OAEwI2ky90KGNoH9dOsxWybS+A+YJizCfTrsxNhZ+bmgKqqY1yKqhF8UvY7abEVPVUxwoOvEcF0FSFIblSYB6vHzooATK1uwJufo46PxjTZXBXKfNd3RYl8uKh4YxkhIzV6d5Z9NzWZDoKl0PEmpSZTzr8qwEvcFvRLY0CoXKwUlkrEPAt6PzHP7EfwjEQfOWSKI0f7YgirTrrcUDCLrCDp2ByvIOpD6U0PCfz3yfKWtxhKGKAOu2sUE17MrHdmOmQ8Kc9R5AHiElStgJQnLkLLK0L/HVSwHIp7P9pI0RaeVafNh0l/Y+govRh+ZpHcqlfOL1rHcEc+CTVx2aB1WSp68UnQNR1MEVCP+aFoqpxpPSsokuDL/XUCFZbidfv6QB2BHRvWICx4jRNswO2iEG6qpRl+ox9Qqx0jy/Zp5R3T4io6M8EV7tNlELs5RiZ/vz1JFOnD2Cy3i3PHu0tqnwmcW3aR4qGp3e8GCqm+WzG/HQNw8L5uj+oiV0qICfkPtM+N5YvMnWCamTWZUo7JY6/9nOVFN97zISwyxFyB0/Fs67EuOU7CjW4WH02Meg7P/FucjrYjj1nNPn0ZQI20AvvhSqOVGjJdnkQsSOFOf4Xl9h8SRjZOdKyAo7hbBv/EPjVLiYEvstxTIXvrJtXtjHQvpXZAahJ/KEcWoxAmz+Fos89bXyZYlv9QOX3Rk31MTNx1e9myYJ6rMJqALpgMend+in7mcBBKdP8HK3aPvP7pyeX9pmHqgqznGsQya7OksVtc1Wh/2E2ZfkTQNDYzy4Gqp5b3mnrPzJKc7FREA7byhhaxtXJ5ho2VYtms60gxkNGONt5xJLAwuWsGHDiZlWG3gOA5DEjX4/uw8dksx/z1T7ly1/WsPSvUBeDJePM7Eq8LFYyGvPoCHX37NqX9sAinD7RXs+rzk9FA7hR5JyYzA4NHyNw58gu4yajvFeF6Zj8mq06dySURoZqkx4aWSJ5+9CTH0vkRa8ufqy0jjNE/illfH2I7PXsgomYo5UeAIgA6KF5vRvCSM2Qi2V9g7cvN4ss+4EM0sWDu1C7k09bLbxricGwT+CzIS15G8XYQJgUg4mDTp3NzvshbDuj7PVDkA/EuD26/IWeJhY24nKTut+UsKZhyDWA3rnsJZ9/xh8+vS6Qo5qZyj3hfWcV3KujEeJCVFdo/3UM6oy54jWkJqzJFC3SO1tbDF0RXLM/cbNRlcFaprTFcLPB7b1zGDZqLAq64ABV9oIT8+3VwlerzC+WIXzWwwM8xujB3367Ja4TGr977ZbfBZ5XeFWh+iITJKMGsk9ZUlb375ShwlsLSmk3Dma0eS2RmpSTqRW1SBVDgKPi52P9uW5nNypaMi84Ik7nYz7FxBjzTwSLxP+XDBL1OC67NDd7QpHuGm2A1xfX9eEK8C5R0lGKMA3Bvc5RNcAJ1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVijAZfc2hhcGWUSwGFlHViLg==",
|
44 |
+
"dtype": "float32",
|
45 |
+
"low": "[-1.]",
|
46 |
+
"high": "[1.]",
|
47 |
+
"bounded_below": "[ True]",
|
48 |
+
"bounded_above": "[ True]",
|
49 |
+
"_np_random": "RandomState(MT19937)",
|
50 |
+
"_shape": [
|
51 |
+
1
|
52 |
+
]
|
53 |
+
},
|
54 |
+
"n_envs": 1,
|
55 |
+
"num_timesteps": 50016,
|
56 |
+
"_total_timesteps": 50000,
|
57 |
+
"_num_timesteps_at_start": 0,
|
58 |
+
"seed": 0,
|
59 |
+
"action_noise": null,
|
60 |
+
"start_time": 1614621348.7207866,
|
61 |
+
"learning_rate": {
|
62 |
+
":type:": "<class 'function'>",
|
63 |
+
":serialized:": "gASV2QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxVL3ZvbHVtZS9VU0VSU1RPUkUvcmFmZl9hbi9wcm9qZWN0cy90b3JjaHktYmFzZWxpbmVzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS3xDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVS92b2x1bWUvVVNFUlNUT1JFL3JhZmZfYW4vcHJvamVjdHMvdG9yY2h5LWJhc2VsaW5lcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
64 |
+
},
|
65 |
+
"tensorboard_log": null,
|
66 |
+
"lr_schedule": {
|
67 |
+
":type:": "<class 'function'>",
|
68 |
+
":serialized:": "gASV2QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxVL3ZvbHVtZS9VU0VSU1RPUkUvcmFmZl9hbi9wcm9qZWN0cy90b3JjaHktYmFzZWxpbmVzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS3xDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVS92b2x1bWUvVVNFUlNUT1JFL3JhZmZfYW4vcHJvamVjdHMvdG9yY2h5LWJhc2VsaW5lcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
69 |
+
},
|
70 |
+
"_last_obs": null,
|
71 |
+
"_last_episode_starts": null,
|
72 |
+
"_last_original_obs": {
|
73 |
+
":type:": "<class 'numpy.ndarray'>",
|
74 |
+
":serialized:": "gASVkgAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwFLAoaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUMIgMWXv/wknTuUdJRiLg=="
|
75 |
+
},
|
76 |
+
"_episode_num": 297,
|
77 |
+
"use_sde": true,
|
78 |
+
"sde_sample_freq": -1,
|
79 |
+
"_current_progress_remaining": -0.000320000000000098,
|
80 |
+
"ep_info_buffer": {
|
81 |
+
":type:": "<class 'collections.deque'>",
|
82 |
+
":serialized:": "gASV8wsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQFcAV1fVqeuMAWyUS2GMAXSUR0CYzG9sJpnIdX2UKGgGR0BXRFINEw36aAdLTmgIR0CY3tizcAR1dX2UKGgGR0BW8kSh8IAwaAdLXmgIR0CY8W7x/d6+dX2UKGgGR0BW9Yj4YaYNaAdLXmgIR0CZBAHKwIMSdX2UKGgGR0BXC7nkkrwwaAdLYmgIR0CZFoqGDcubdX2UKGgGR0BW7vaDf3vhaAdLX2gIR0CZKQiTMaCMdX2UKGgGR0BXgJuIhyKfaAdLT2gIR0CZNW8Gs3hodX2UKGgGR0BXYwO8TSLJaAdLS2gIR0CZR/50r9VFdX2UKGgGR0BXaXww0wajaAdLTGgIR0CZVHvAGjbjdX2UKGgGR0BXcronrpqzaAdLT2gIR0CZYPDdgv12dX2UKGgGR0BXQsY2sJY1aAdLVWgIR0CZc1rsjVx0dX2UKGgGR0BXYIPTXrdFaAdLTmgIR0CZhddweeWfdX2UKGgGR0BXMUSRKYiQaAdLZmgIR0CZmIMoMKCydX2UKGgGR0BXQNDc/MW5aAdLVWgIR0CZpNrIHTqjdX2UKGgGR0BXQQ6EJ0GNaAdLUWgIR0CZt25CF9KFdX2UKGgGR0BXQM/yGzrvaAdLUmgIR0CZw9T3qRlpdX2UKGgGR0BXQwWJrLyMaAdLVmgIR0CZ1lLUTcqOdX2UKGgGR0BXO09IPK+0aAdLUGgIR0CZ6LW7voeQdX2UKGgGR0BXFO7cwg1WaAdLYGgIR0CZ+ycpb2UTdX2UKGgGR0BXNddqtYCAaAdLYmgIR0CaDaWH1vl2dX2UKGgGR0BW8y39aUzLaAdLX2gIR0CaID1OTJQtdX2UKGgGR0BXNIfnwG4aaAdLaGgIR0CaMu5KODJ2dX2UKGgGR0BXBLHdXT3JaAdLYWgIR0CaRZojfNzKdX2UKGgGR0BXUONkvsZ6aAdLT2gIR0CaUir1uivgdX2UKGgGR0BXcgjdHlOoaAdLUWgIR0CaZKIcinpCdX2UKGgGR0BW6xgE2YOUaAdLYGgIR0Cad2gAIY3vdX2UKGgGR0BXBYNqgyuZaAdLYWgIR0CaidS/0ulHdX2UKGgGR0BW7naJyhi9aAdLYGgIR0CanD/DLr5ZdX2UKGgGR0BW2x6OYIBzaAdLZmgIR0Carq4+8oQWdX2UKGgGR0BW8hlQMx46aAdLYmgIR0CawVKArhBJdX2UKGgGR0BW8iO/+Kj0aAdLYWgIR0Ca089ORDCxdX2UKGgGR0BXA+UyHmA9aAdLYWgIR0Ca5qUjcEeRdX2UKGgGR0BW3/qgRK6GaAdLY2gIR0Ca+RaFEiMYdX2UKGgGR0BW0ffj0cwQaAdLZGgIR0CbEeZWJaaDdX2UKGgGR0BW7x0MgEEDaAdLYmgIR0CbJJwaBI4EdX2UKGgGR0BW+yILw4KhaAdLbWgIR0CbNxZOi35OdX2UKGgGR0BXEIYrJ8v3aAdLYmgIR0CbSZk4FRpDdX2UKGgGR0BW5ksWfseGaAdLYmgIR0CbXDfPHDJmdX2UKGgGR0BW3kNvwVj7aAdLZGgIR0Cbbrh7mdRSdX2UKGgGR0BW3ARsdkrgaAdLYmgIR0CbgUtWuHN5dX2UKGgGR0BW9abjLjgiaAdLZWgIR0Cbk8x1gYxddX2UKGgGR0BVLscMmWt2aAdLtmgIR0CbuOsWO6uodX2UKGgGR0BW+o9cKPXDaAdLZmgIR0Cby4D8LroodX2UKGgGR0BWw1cUuctoaAdLY2gIR0Cb3eCW/rSmdX2UKGgGR0BWuyhSLqD9aAdLZmgIR0Cb9qLronrqdX2UKGgGR0BWu5oGpuMuaAdLcmgIR0CcCTDK5kLAdX2UKGgGR0BW1SIHkcS5aAdLZGgIR0CcG7UGmk30dX2UKGgGR0BWzsHKOktVaAdLY2gIR0CcLjtDlYEGdX2UKGgGR0BVqXHeaa1DaAdLrWgIR0CcUxq8lHBldX2UKGgGR0BWPJRwZOzqaAdLdmgIR0Cca7TM7lq8dX2UKGgGR0BRrYYekpI+aAdNYgFoCEdAnK+keU6gd3V9lChoBkdAVWI+Sr5qM2gHS69oCEdAnM650fYBeXV9lChoBkdAVhUYaYNRWWgHS5poCEdAnO3WOMl1KXV9lChoBkdAVtbUWl/H52gHS2VoCEdAnQDGWpqASXV9lChoBkdAVwiSidrftWgHS2hoCEdAnRNQIyCWeHV9lChoBkdAVG/fHggow2gHTRYBaAhHQJ1K7OLR8dB1fZQoaAZHQFNah6Skj5doB00YAWgIR0CdgpN5t3wDdX2UKGgGR0BW4hrFfiPyaAdLZ2gIR0CdlTnpjc2zdX2UKGgGR0BW3yyUs4DLaAdLaWgIR0Cdp+IGQjlgdX2UKGgGR0BUxlXV9Wp7aAdLwWgIR0CdzN7Sy+pPdX2UKGgGR0BWwsDKYAsDaAdLa2gIR0Cd5ZreIl+mdX2UKGgGR0BWvDDCP6sRaAdLZGgIR0Cd+FBUrCm/dX2UKGgGR0BT6H2VVxS6aAdNEwFoCEdAnioZG8VYZHV9lChoBkdAVtS48U21lWgHS2RoCEdAnjzTf779AHV9lChoBkdAVqgeFL39JmgHS2poCEdAnlWKzE74jHV9lChoBkdAVTPDpC8e0WgHS/toCEdAnob/a6BiC3V9lChoBkdAVeDWuoxYaGgHS7ZoCEdAnqYN47ihnXV9lChoBkdAVbb9Nvfj0mgHS6VoCEdAnsTngxagVXV9lChoBkdAVRCVW0Z3tGgHS7ZoCEdAnunj8+A3DXV9lChoBkdAVhLGEPDpDGgHS6xoCEdAnwjJkf9xZXV9lChoBkdAVwzNt65Xl2gHS2poCEdAnyGYQ8OkL3V9lChoBkdAVWbURWcSXmgHS6poCEdAn0CUmY0EYHV9lChoBkdAVROpn6Eal2gHS+JoCEdAn28BUR3/xXV9lChoBkdAVcyi1y/9HmgHS59oCEdAn43/1DjR2XV9lChoBkdAVb1l5GBnSWgHS7FoCEdAn7Md1MdtEXV9lChoBkfAU1HqRlpXZGgHTecDaAhHQKA5ncCYCyR1fZQoaAZHQD6eMm4RVZNoB02FA2gIR0CgkEC97F85dX2UKGgGR8BRQiSRr8BNaAdN5wNoCEdAoPCERlHz6XV9lChoBkfAS4OEZiuuBGgHTecDaAhHQKFQaK0lZ5l1fZQoaAZHQFRF6Eal1r9oB01gAWgIR0Chcn0fxMFmdX2UKGgGR0BV6MHfMwDeaAdL1WgIR0ChiDyiM5wPdX2UKGgGR0BWznLJSzgNaAdLpGgIR0Chl7NOdoWYdX2UKGgGR0BWoxCdBjWkaAdL02gIR0ChrWzcAR02dX2UKGgGR0BW86W9lEqlaAdLxWgIR0ChwAJD3M6jdX2UKGgGR0BXA5/oaDPGaAdNdwFoCEdAoeUhle4TbnV9lChoBkdAVeNyMkyDZmgHTRQBaAhHQKH95amGdqd1fZQoaAZHQFWuvC/GlyloB008AWgIR0CiHTdbgTAWdX2UKGgGR0BVJD6nBLwnaAdNBgJoCEdAok6Vq8DjinV9lChoBkdAVj+Us4DLbGgHTTsBaAhHQKJtpAP/aQF1fZQoaAZHQFdjMxXXAdpoB0vJaAhHQKKDRXd0q6R1fZQoaAZHQFfCuLJjlPtoB00WAWgIR0Cim+xbr1M/dX2UKGgGR0BX61MyrPt2aAdLn2gIR0Ciq0dHDrJKdX2UKGgGR0BXzOEVWS2ZaAdLfGgIR0Cit8DfNzKcdX2UKGgGR0BWoZAlfJFLaAdNTgFoCEdAotm68QI2O3V9lChoBkdAVoEa2nbZe2gHTWUBaAhHQKL74dQO4G51fZQoaAZHQFfEguyu6mRoB0uOaAhHQKMIRGff4yp1fZQoaAZHQFWrzaK1og5oB00vAWgIR0CjJxD1GsmwdX2UKGgGR0BUr6z/p+tsaAdNwgFoCEdAo1LFLamGd3V9lChoBkdAV3ynIhhYvGgHS4doCEdAo18uYD1XeXV9lChoBkdAV2s8A7xNI2gHS7poCEdAo3GY3gk1M3VlLg=="
|
83 |
+
},
|
84 |
+
"ep_success_buffer": {
|
85 |
+
":type:": "<class 'collections.deque'>",
|
86 |
+
":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
87 |
+
},
|
88 |
+
"_n_updates": 50016,
|
89 |
+
"buffer_size": 1,
|
90 |
+
"batch_size": 512,
|
91 |
+
"learning_starts": 0,
|
92 |
+
"tau": 0.01,
|
93 |
+
"gamma": 0.9999,
|
94 |
+
"gradient_steps": 32,
|
95 |
+
"optimize_memory_usage": false,
|
96 |
+
"replay_buffer_class": {
|
97 |
+
":type:": "<class 'abc.ABCMeta'>",
|
98 |
+
":serialized:": "gASVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
|
99 |
+
"__module__": "stable_baselines3.common.buffers",
|
100 |
+
"__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device:\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
|
101 |
+
"__init__": "<function ReplayBuffer.__init__ at 0x7f86c2b2eb90>",
|
102 |
+
"add": "<function ReplayBuffer.add at 0x7f86c2b2ec20>",
|
103 |
+
"sample": "<function ReplayBuffer.sample at 0x7f86c26957a0>",
|
104 |
+
"_get_samples": "<function ReplayBuffer._get_samples at 0x7f86c2695830>",
|
105 |
+
"__abstractmethods__": "frozenset()",
|
106 |
+
"_abc_impl": "<_abc_data object at 0x7f86c2b865d0>"
|
107 |
+
},
|
108 |
+
"replay_buffer_kwargs": {},
|
109 |
+
"train_freq": {
|
110 |
+
":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
|
111 |
+
":serialized:": "gASVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLIGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
|
112 |
+
},
|
113 |
+
"use_sde_at_warmup": false,
|
114 |
+
"target_entropy": -1.0,
|
115 |
+
"log_ent_coef": null,
|
116 |
+
"ent_coef": 0.1,
|
117 |
+
"target_update_interval": 1,
|
118 |
+
"ent_coef_optimizer": null,
|
119 |
+
"top_quantiles_to_drop_per_net": 2,
|
120 |
+
"_last_dones": {
|
121 |
+
":type:": "<class 'numpy.ndarray'>",
|
122 |
+
":serialized:": "gASViQAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwGFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDAQCUdJRiLg=="
|
123 |
+
},
|
124 |
+
"remove_time_limit_termination": false
|
125 |
+
}
|
tqc-MountainCarContinuous-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8509b9a7bc1dc696b3723cc67a8560f1609dcaeec809911db3e953e8a8f1aad4
|
3 |
+
size 125000
|
tqc-MountainCarContinuous-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:39440af5158e3fb47ecc525e9d329ecbd7c856bf70fd565c749cc2c45263e188
|
3 |
+
size 747
|
tqc-MountainCarContinuous-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.13.0-44-generic-x86_64-with-debian-bullseye-sid #49~20.04.1-Ubuntu SMP Wed May 18 18:44:28 UTC 2022
|
2 |
+
Python: 3.7.10
|
3 |
+
Stable-Baselines3: 1.5.1a8
|
4 |
+
PyTorch: 1.11.0
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.2
|
7 |
+
Gym: 0.21.0
|
train_eval_metrics.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d5f7902c1c8b65253bbf530f563d0229e1ef54389b048da27ffb708dda660d02
|
3 |
+
size 9653
|