create first README
Browse files
README.md
CHANGED
@@ -1,14 +1,9 @@
|
|
1 |
-
This
|
2 |
-
The first results are not promising may be due to using small check-points. I will work on it for improvements!
|
3 |
-
|
4 |
-
The code piece for training
|
5 |
|
6 |
```
|
7 |
-
from simplet5 import SimpleT5
|
8 |
model = SimpleT5()
|
9 |
model.from_pretrained("mt5","google/mt5-small")
|
10 |
|
11 |
-
# train
|
12 |
model.train(train_df=train2, # pandas dataframe with 2 columns: source_text & target_text
|
13 |
eval_df=validation2, # pandas dataframe with 2 columns: source_text & target_text
|
14 |
source_max_token_len = 512,
|
@@ -21,4 +16,3 @@ model.train(train_df=train2, # pandas dataframe with 2 columns: source_text & ta
|
|
21 |
precision = 32
|
22 |
)
|
23 |
```
|
24 |
-
|
|
|
1 |
+
This checkpoint is trained with the Turkish part of the MLSUM dataset where google/mt5 PLM is fine-tuned. [SimpleT5](https://github.com/Shivanandroy/simpleT5) library is used to fine-tune. Here is the code snippet for training
|
|
|
|
|
|
|
2 |
|
3 |
```
|
|
|
4 |
model = SimpleT5()
|
5 |
model.from_pretrained("mt5","google/mt5-small")
|
6 |
|
|
|
7 |
model.train(train_df=train2, # pandas dataframe with 2 columns: source_text & target_text
|
8 |
eval_df=validation2, # pandas dataframe with 2 columns: source_text & target_text
|
9 |
source_max_token_len = 512,
|
|
|
16 |
precision = 32
|
17 |
)
|
18 |
```
|
|