savasy commited on
Commit
2081aed
·
1 Parent(s): 914cb13

create first README

Browse files
Files changed (1) hide show
  1. README.md +1 -7
README.md CHANGED
@@ -1,14 +1,9 @@
1
- This model was trained with MLSUM (Turkish language) summarization datasets where I fine-tuned google/mt5-small using [SimpleT5](https://github.com/Shivanandroy/simpleT5) library.
2
- The first results are not promising may be due to using small check-points. I will work on it for improvements!
3
-
4
- The code piece for training
5
 
6
  ```
7
- from simplet5 import SimpleT5
8
  model = SimpleT5()
9
  model.from_pretrained("mt5","google/mt5-small")
10
 
11
- # train
12
  model.train(train_df=train2, # pandas dataframe with 2 columns: source_text & target_text
13
  eval_df=validation2, # pandas dataframe with 2 columns: source_text & target_text
14
  source_max_token_len = 512,
@@ -21,4 +16,3 @@ model.train(train_df=train2, # pandas dataframe with 2 columns: source_text & ta
21
  precision = 32
22
  )
23
  ```
24
-
 
1
+ This checkpoint is trained with the Turkish part of the MLSUM dataset where google/mt5 PLM is fine-tuned. [SimpleT5](https://github.com/Shivanandroy/simpleT5) library is used to fine-tune. Here is the code snippet for training
 
 
 
2
 
3
  ```
 
4
  model = SimpleT5()
5
  model.from_pretrained("mt5","google/mt5-small")
6
 
 
7
  model.train(train_df=train2, # pandas dataframe with 2 columns: source_text & target_text
8
  eval_df=validation2, # pandas dataframe with 2 columns: source_text & target_text
9
  source_max_token_len = 512,
 
16
  precision = 32
17
  )
18
  ```