import torch import torch.nn as nn class TxnAnomalyGRU(nn.Module): def __init__(self, input_dim=32, hidden_dim=128, num_layers=2, dropout=0.3): super().__init__() self.gru = nn.GRU(input_dim, hidden_dim, num_layers=num_layers, bidirectional=True, batch_first=True, dropout=dropout) self.batchnorm = nn.BatchNorm1d(hidden_dim * 2) self.dropout = nn.Dropout(dropout) self.fc1 = nn.Linear(hidden_dim * 2, 64) self.relu = nn.ReLU() self.out = nn.Linear(64, 1) self.sigmoid = nn.Sigmoid() def forward(self, x): h0 = torch.zeros(self.gru.num_layers * 2, x.size(0), self.gru.hidden_size).to(x.device) out, _ = self.gru(x, h0) out = out[:, -1, :] out = self.batchnorm(out) out = self.dropout(out) out = self.relu(self.fc1(out)) out = self.sigmoid(self.out(out)) return out