File size: 1,141 Bytes
57778ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
# GRU Sequence Anomaly Detector

This project provides an open-source, bidirectional GRU-based deep learning model to detect anomalies in time-series transactional data. It is designed to be general-purpose and supports transfer learning.

## πŸ“‚ Project Structure

- `models/` – Contains the model architecture and trained weights
- `pipeline/` – Core training, evaluation, and export logic
- `utils/` – Logging and utility functions
- `notebooks/` – Example usage and exploration
- `tests/` – Unit and integration tests
- `main.py` – Entry script to run training/evaluation
- `fine_tune_template.py` – Script for model fine-tuning on external datasets
- `model_card.md` – Model documentation and expected usage
- `requirements.txt` – All required dependencies

## πŸ“¦ Pretrained Models

- `models/txn_anomaly_model.pt` – PyTorch model file for fine-tuning or loading
- `models/txn_anomaly_model.onnx` – ONNX model file for deployment in other runtimes

## πŸš€ Quick Start

```bash
pip install -r requirements.txt
python main.py
```

To fine-tune:

```bash
python fine_tune_template.py --data your_dataset.csv
```