--- tags: - merge - mergekit - kaist-ai/mistral-orpo-beta - NousResearch/Hermes-2-Pro-Mistral-7B - mistralai/Mistral-7B-Instruct-v0.2 base_model: - kaist-ai/mistral-orpo-beta - NousResearch/Hermes-2-Pro-Mistral-7B - mistralai/Mistral-7B-Instruct-v0.2 --- # Orpomis-Prime-7B-it Orpomis-Prime-7B-it is a merge of the following models using [Mergekit](https://github.com/arcee-ai/mergekit): * [kaist-ai/mistral-orpo-beta](https://huggingface.co/kaist-ai/mistral-orpo-beta) * [NousResearch/Hermes-2-Pro-Mistral-7B](https://huggingface.co/NousResearch/Hermes-2-Pro-Mistral-7B) * [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) ## 🧩 Configuration ```yamlname: Orpomis-Prime-7B-it models: - model: kaist-ai/mistral-orpo-beta - model: NousResearch/Hermes-2-Pro-Mistral-7B - model: mistralai/Mistral-7B-Instruct-v0.2 merge_method: model_stock base_model: mistralai/Mistral-7B-Instruct-v0.2 dtype: bfloat16``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "saucam/Orpomis-Prime-7B-it" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```