File size: 2,651 Bytes
66f801a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
---
license: apache-2.0
base_model: facebook/wav2vec2-base
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: emotion_detection_model
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# emotion_detection_model

This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6542
- Accuracy: 0.8291

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 20

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.6124        | 0.99  | 70   | 1.5873          | 0.3984   |
| 1.2504        | 1.99  | 141  | 1.2053          | 0.5963   |
| 0.833         | 3.0   | 212  | 0.8178          | 0.7504   |
| 0.6633        | 4.0   | 283  | 0.7137          | 0.7783   |
| 0.5791        | 4.99  | 353  | 0.6395          | 0.7915   |
| 0.4472        | 5.99  | 424  | 0.6398          | 0.7968   |
| 0.378         | 7.0   | 495  | 0.5669          | 0.8145   |
| 0.2902        | 8.0   | 566  | 0.5777          | 0.8158   |
| 0.2621        | 8.99  | 636  | 0.6320          | 0.8074   |
| 0.231         | 9.99  | 707  | 0.6347          | 0.8149   |
| 0.174         | 11.0  | 778  | 0.6649          | 0.8096   |
| 0.1781        | 12.0  | 849  | 0.6180          | 0.8211   |
| 0.1566        | 12.99 | 919  | 0.6311          | 0.8211   |
| 0.1239        | 13.99 | 990  | 0.6322          | 0.8207   |
| 0.1223        | 15.0  | 1061 | 0.6443          | 0.8264   |
| 0.0988        | 16.0  | 1132 | 0.6424          | 0.8255   |
| 0.0866        | 16.99 | 1202 | 0.6542          | 0.8291   |
| 0.0661        | 17.99 | 1273 | 0.6748          | 0.8264   |
| 0.0815        | 19.0  | 1344 | 0.6723          | 0.8286   |
| 0.0595        | 19.79 | 1400 | 0.6865          | 0.8229   |


### Framework versions

- Transformers 4.37.0
- Pytorch 2.1.2
- Datasets 2.1.0
- Tokenizers 0.15.1