File size: 12,668 Bytes
c288a46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d774330
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c288a46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9950aec
c288a46
 
 
 
 
 
 
d774330
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c288a46
 
 
 
9950aec
 
 
c288a46
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
---
library_name: transformers
license: apache-2.0
base_model: facebook/detr-resnet-101
tags:
- generated_from_trainer
model-index:
- name: detr_finetuned_cppe5
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# detr_finetuned_cppe5

This model is a fine-tuned version of [facebook/detr-resnet-101](https://huggingface.co/facebook/detr-resnet-101) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3489
- Map: 0.2197
- Map 50: 0.4408
- Map 75: 0.1896
- Map Small: 0.0734
- Map Medium: 0.1903
- Map Large: 0.3159
- Mar 1: 0.2516
- Mar 10: 0.4459
- Mar 100: 0.4733
- Mar Small: 0.191
- Mar Medium: 0.4214
- Mar Large: 0.6208
- Map Coverall: 0.4922
- Mar 100 Coverall: 0.6752
- Map Face Shield: 0.1239
- Mar 100 Face Shield: 0.4392
- Map Gloves: 0.1397
- Mar 100 Gloves: 0.4259
- Map Goggles: 0.0782
- Mar 100 Goggles: 0.42
- Map Mask: 0.2645
- Mar 100 Mask: 0.4062

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- num_epochs: 30

### Training results

| Training Loss | Epoch | Step | Validation Loss | Map    | Map 50 | Map 75 | Map Small | Map Medium | Map Large | Mar 1  | Mar 10 | Mar 100 | Mar Small | Mar Medium | Mar Large | Map Coverall | Mar 100 Coverall | Map Face Shield | Mar 100 Face Shield | Map Gloves | Mar 100 Gloves | Map Goggles | Mar 100 Goggles | Map Mask | Mar 100 Mask |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:----------:|:---------:|:------:|:------:|:-------:|:---------:|:----------:|:---------:|:------------:|:----------------:|:---------------:|:-------------------:|:----------:|:--------------:|:-----------:|:---------------:|:--------:|:------------:|
| No log        | 1.0   | 107  | 2.2906          | 0.0222 | 0.0441 | 0.02   | 0.0042    | 0.0229     | 0.0243    | 0.0624 | 0.1415 | 0.1926  | 0.052     | 0.1457     | 0.2191    | 0.0902       | 0.5595           | 0.0             | 0.0                 | 0.0106     | 0.1839         | 0.0         | 0.0             | 0.0103   | 0.2196       |
| No log        | 2.0   | 214  | 2.2644          | 0.0368 | 0.0827 | 0.0263 | 0.0071    | 0.0254     | 0.0396    | 0.059  | 0.1417 | 0.1885  | 0.0671    | 0.1532     | 0.197     | 0.1528       | 0.5108           | 0.0             | 0.0                 | 0.0102     | 0.2013         | 0.0         | 0.0             | 0.0209   | 0.2302       |
| No log        | 3.0   | 321  | 2.1753          | 0.0446 | 0.108  | 0.0328 | 0.0103    | 0.0392     | 0.0454    | 0.0729 | 0.1561 | 0.1818  | 0.0786    | 0.1465     | 0.19      | 0.1766       | 0.505            | 0.0             | 0.0                 | 0.0152     | 0.1817         | 0.0         | 0.0             | 0.0313   | 0.2222       |
| No log        | 4.0   | 428  | 2.0441          | 0.0708 | 0.1548 | 0.0557 | 0.0094    | 0.0532     | 0.0746    | 0.0863 | 0.1814 | 0.1966  | 0.0738    | 0.1496     | 0.2101    | 0.2703       | 0.5491           | 0.0             | 0.0                 | 0.032      | 0.2138         | 0.0         | 0.0             | 0.0515   | 0.22         |
| 2.0459        | 5.0   | 535  | 1.8798          | 0.0896 | 0.1805 | 0.0813 | 0.012     | 0.0648     | 0.0977    | 0.0895 | 0.2014 | 0.2246  | 0.081     | 0.1749     | 0.2519    | 0.3432       | 0.6018           | 0.0088          | 0.019               | 0.0326     | 0.2402         | 0.0         | 0.0             | 0.0635   | 0.2622       |
| 2.0459        | 6.0   | 642  | 1.8768          | 0.0888 | 0.1898 | 0.0727 | 0.0176    | 0.0618     | 0.1025    | 0.0974 | 0.2118 | 0.2366  | 0.0936    | 0.1639     | 0.2877    | 0.3342       | 0.6113           | 0.0102          | 0.081               | 0.0409     | 0.2536         | 0.0001      | 0.0046          | 0.0585   | 0.2324       |
| 2.0459        | 7.0   | 749  | 1.8465          | 0.0917 | 0.2075 | 0.0735 | 0.0216    | 0.0758     | 0.1166    | 0.0993 | 0.2008 | 0.2114  | 0.0748    | 0.1657     | 0.2472    | 0.3279       | 0.5905           | 0.0187          | 0.0443              | 0.0297     | 0.1862         | 0.0         | 0.0             | 0.0824   | 0.236        |
| 2.0459        | 8.0   | 856  | 1.7855          | 0.1165 | 0.2639 | 0.0908 | 0.0309    | 0.1054     | 0.1401    | 0.1341 | 0.2522 | 0.2767  | 0.0914    | 0.2412     | 0.3087    | 0.3517       | 0.6122           | 0.035           | 0.1684              | 0.0605     | 0.2902         | 0.0076      | 0.0215          | 0.1279   | 0.2911       |
| 2.0459        | 9.0   | 963  | 1.7916          | 0.1089 | 0.2494 | 0.0794 | 0.0287    | 0.087      | 0.1542    | 0.1341 | 0.282  | 0.3076  | 0.1564    | 0.2707     | 0.3343    | 0.3475       | 0.5685           | 0.0525          | 0.2797              | 0.0412     | 0.3063         | 0.0044      | 0.0754          | 0.099    | 0.308        |
| 1.6481        | 10.0  | 1070 | 1.6954          | 0.13   | 0.288  | 0.0955 | 0.0547    | 0.1057     | 0.1728    | 0.1643 | 0.3253 | 0.3494  | 0.1481    | 0.3027     | 0.4404    | 0.4015       | 0.6144           | 0.0393          | 0.2823              | 0.0652     | 0.3362         | 0.018       | 0.2185          | 0.1261   | 0.2956       |
| 1.6481        | 11.0  | 1177 | 1.7003          | 0.1424 | 0.3156 | 0.1053 | 0.0356    | 0.1306     | 0.1797    | 0.1699 | 0.3168 | 0.3385  | 0.1057    | 0.2948     | 0.4284    | 0.3823       | 0.6203           | 0.0518          | 0.2684              | 0.0809     | 0.308          | 0.0254      | 0.1569          | 0.1718   | 0.3391       |
| 1.6481        | 12.0  | 1284 | 1.6607          | 0.1468 | 0.3287 | 0.1131 | 0.0482    | 0.1304     | 0.1974    | 0.185  | 0.3226 | 0.3403  | 0.1284    | 0.2845     | 0.43      | 0.3794       | 0.5991           | 0.0699          | 0.2734              | 0.0715     | 0.3112         | 0.0238      | 0.1908          | 0.1892   | 0.3271       |
| 1.6481        | 13.0  | 1391 | 1.5862          | 0.1479 | 0.3321 | 0.1154 | 0.0532    | 0.1332     | 0.1939    | 0.1686 | 0.3415 | 0.3611  | 0.1666    | 0.3319     | 0.4261    | 0.4009       | 0.6275           | 0.0778          | 0.2835              | 0.0665     | 0.3263         | 0.0194      | 0.2354          | 0.1751   | 0.3329       |
| 1.6481        | 14.0  | 1498 | 1.6090          | 0.156  | 0.3327 | 0.1277 | 0.0447    | 0.1329     | 0.2319    | 0.1894 | 0.3776 | 0.4062  | 0.1785    | 0.357      | 0.5088    | 0.4333       | 0.6437           | 0.0546          | 0.3848              | 0.0923     | 0.3759         | 0.0302      | 0.2677          | 0.1694   | 0.3591       |
| 1.4268        | 15.0  | 1605 | 1.4913          | 0.1795 | 0.3855 | 0.147  | 0.0629    | 0.1506     | 0.2349    | 0.2076 | 0.3961 | 0.4235  | 0.2045    | 0.3634     | 0.5405    | 0.4682       | 0.6523           | 0.0713          | 0.3532              | 0.0941     | 0.3638         | 0.0461      | 0.3662          | 0.2179   | 0.3822       |
| 1.4268        | 16.0  | 1712 | 1.5350          | 0.1775 | 0.404  | 0.1384 | 0.0649    | 0.1484     | 0.2563    | 0.2119 | 0.3822 | 0.4094  | 0.1624    | 0.3624     | 0.5271    | 0.4532       | 0.6473           | 0.0644          | 0.3392              | 0.0806     | 0.3406         | 0.074       | 0.3538          | 0.2154   | 0.3662       |
| 1.4268        | 17.0  | 1819 | 1.4915          | 0.1842 | 0.3823 | 0.1568 | 0.0591    | 0.1542     | 0.2608    | 0.2168 | 0.3984 | 0.4208  | 0.1613    | 0.3758     | 0.5317    | 0.4509       | 0.6586           | 0.0853          | 0.3595              | 0.0951     | 0.3728         | 0.0471      | 0.3231          | 0.2428   | 0.3902       |
| 1.4268        | 18.0  | 1926 | 1.4537          | 0.1943 | 0.4042 | 0.1637 | 0.0724    | 0.1683     | 0.2693    | 0.2178 | 0.414  | 0.4384  | 0.1963    | 0.386      | 0.5681    | 0.4548       | 0.6577           | 0.0928          | 0.3772              | 0.1061     | 0.371          | 0.0684      | 0.3723          | 0.2494   | 0.4138       |
| 1.2822        | 19.0  | 2033 | 1.4585          | 0.1947 | 0.4081 | 0.1622 | 0.056     | 0.1612     | 0.2822    | 0.2239 | 0.4019 | 0.4303  | 0.1415    | 0.3811     | 0.5779    | 0.4742       | 0.6568           | 0.0916          | 0.3911              | 0.0974     | 0.3719         | 0.0701      | 0.3523          | 0.2404   | 0.3796       |
| 1.2822        | 20.0  | 2140 | 1.4307          | 0.2048 | 0.4048 | 0.1845 | 0.0582    | 0.179      | 0.2957    | 0.2286 | 0.4145 | 0.437   | 0.1719    | 0.3827     | 0.5799    | 0.4801       | 0.6541           | 0.102           | 0.381               | 0.1017     | 0.3701         | 0.091       | 0.3723          | 0.2491   | 0.4076       |
| 1.2822        | 21.0  | 2247 | 1.3939          | 0.1981 | 0.421  | 0.1641 | 0.0716    | 0.1697     | 0.2914    | 0.2249 | 0.4264 | 0.45    | 0.2087    | 0.3874     | 0.5846    | 0.4618       | 0.6685           | 0.1003          | 0.3886              | 0.1179     | 0.4228         | 0.0725      | 0.38            | 0.2378   | 0.3902       |
| 1.2822        | 22.0  | 2354 | 1.3966          | 0.2084 | 0.4238 | 0.1814 | 0.0638    | 0.1836     | 0.2981    | 0.2372 | 0.4322 | 0.455   | 0.1738    | 0.4012     | 0.6097    | 0.4764       | 0.6626           | 0.0987          | 0.4051              | 0.135      | 0.4098         | 0.0797      | 0.4015          | 0.252    | 0.396        |
| 1.2822        | 23.0  | 2461 | 1.3867          | 0.2125 | 0.4346 | 0.182  | 0.0781    | 0.1874     | 0.3082    | 0.2534 | 0.432  | 0.4603  | 0.1989    | 0.3963     | 0.6137    | 0.4686       | 0.6626           | 0.115           | 0.4241              | 0.1394     | 0.4147         | 0.0814      | 0.3938          | 0.2581   | 0.4062       |
| 1.1474        | 24.0  | 2568 | 1.3617          | 0.2177 | 0.4413 | 0.1898 | 0.0759    | 0.1939     | 0.3081    | 0.2521 | 0.4427 | 0.4719  | 0.2093    | 0.4277     | 0.6013    | 0.4865       | 0.6761           | 0.1186          | 0.4278              | 0.1469     | 0.4259         | 0.0852      | 0.4308          | 0.2512   | 0.3987       |
| 1.1474        | 25.0  | 2675 | 1.3695          | 0.215  | 0.4353 | 0.1889 | 0.0712    | 0.1881     | 0.3099    | 0.2553 | 0.4463 | 0.4727  | 0.1949    | 0.4258     | 0.6194    | 0.4879       | 0.6748           | 0.1128          | 0.4215              | 0.1426     | 0.4286         | 0.0771      | 0.44            | 0.2545   | 0.3987       |
| 1.1474        | 26.0  | 2782 | 1.3575          | 0.2177 | 0.433  | 0.1898 | 0.073     | 0.1879     | 0.316     | 0.2586 | 0.4454 | 0.4703  | 0.1913    | 0.4133     | 0.6285    | 0.493        | 0.682            | 0.1262          | 0.4228              | 0.1371     | 0.4241         | 0.0757      | 0.4231          | 0.2564   | 0.3996       |
| 1.1474        | 27.0  | 2889 | 1.3664          | 0.2161 | 0.4328 | 0.1848 | 0.0711    | 0.1846     | 0.314     | 0.2507 | 0.4425 | 0.4686  | 0.1885    | 0.4181     | 0.6185    | 0.4908       | 0.6775           | 0.1186          | 0.4165              | 0.1402     | 0.4246         | 0.0759      | 0.4277          | 0.2547   | 0.3969       |
| 1.1474        | 28.0  | 2996 | 1.3482          | 0.2188 | 0.4406 | 0.1864 | 0.0731    | 0.1891     | 0.317     | 0.2517 | 0.4463 | 0.4704  | 0.1906    | 0.4181     | 0.6175    | 0.491        | 0.6752           | 0.1219          | 0.4266              | 0.1388     | 0.4196         | 0.0776      | 0.4231          | 0.2647   | 0.4076       |
| 1.0794        | 29.0  | 3103 | 1.3481          | 0.2189 | 0.4402 | 0.1884 | 0.0732    | 0.1885     | 0.3173    | 0.2519 | 0.4459 | 0.4728  | 0.1923    | 0.4175     | 0.6232    | 0.491        | 0.673            | 0.1237          | 0.4354              | 0.1392     | 0.425          | 0.0768      | 0.4215          | 0.264    | 0.4089       |
| 1.0794        | 30.0  | 3210 | 1.3489          | 0.2197 | 0.4408 | 0.1896 | 0.0734    | 0.1903     | 0.3159    | 0.2516 | 0.4459 | 0.4733  | 0.191     | 0.4214     | 0.6208    | 0.4922       | 0.6752           | 0.1239          | 0.4392              | 0.1397     | 0.4259         | 0.0782      | 0.42            | 0.2645   | 0.4062       |


### Framework versions

- Transformers 4.48.3
- Pytorch 2.5.1+cu124
- Datasets 3.3.1
- Tokenizers 0.21.0