Upload PPO LunarLander-v2 trained agent in hugging face
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander-v2.zip +2 -2
- ppo-LunarLander-v2/data +21 -21
- ppo-LunarLander-v2/policy.optimizer.pth +1 -1
- ppo-LunarLander-v2/policy.pth +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 199.71 +/- 82.58
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7db22a5b8f70>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7db22a5b9000>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7db22a5b9090>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7db22a5b9120>", "_build": "<function ActorCriticPolicy._build at 0x7db22a5b91b0>", "forward": "<function ActorCriticPolicy.forward at 0x7db22a5b9240>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7db22a5b92d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7db22a5b9360>", "_predict": "<function ActorCriticPolicy._predict at 0x7db22a5b93f0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7db22a5b9480>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7db22a5b9510>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7db22a5b95a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7db22a54f380>"}, "verbose": 0, "policy_kwargs": {}, "num_timesteps": 40960, "_total_timesteps": 40000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1711970117961175067, "learning_rate": 0.0001, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAgKbtx+gO7onSsvfk2vjx0hEQ85dGivQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.02400000000000002, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV6QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG83fukUKzCMAWyUS82MAXSUR0CzBPyQcPvsdX2UKGgGR0BxsFRekYXPaAdL1GgIR0CzBUgr1/UfdX2UKGgGR0Bx4GxfOUt7aAdL5WgIR0CzBZohQm/ndX2UKGgGR0BwbR42S+xoaAdL0GgIR0CzB4VTWGypdX2UKGgGR0BwfUuYhMakaAdL2mgIR0CzB73sw+MZdX2UKGgGR0ByfA1rIo3KaAdL+mgIR0CzB/t52QnydX2UKGgGR0Bx3kzqKP4maAdLyWgIR0CzCC8lsxfwdX2UKGgGR0BxArMNc4YKaAdL9GgIR0CzCG2NrCWNdX2UKGgGR0BxMhsEaESNaAdLz2gIR0CzCKFcD8tPdX2UKGgGR0ByDw+r2g3+aAdL3mgIR0CzCNfXoTwldX2UKGgGR0BwLwolUp/gaAdNAAFoCEdAswkbY150KnV9lChoBkdAcR2wTdtVJmgHS99oCEdAswlQUlAu7HV9lChoBkdAc2BgR9PUKGgHS+NoCEdAswr+D0163XV9lChoBkdAc2zQNkOI7GgHS/doCEdAsws8QPI4l3V9lChoBkdAcaqkT6BRRGgHS9JoCEdAswtu4RVZLnV9lChoBkdAceN9kBjnWGgHS+loCEdAswuoz1schnV9lChoBkdAci0s/Y8MeGgHS9xoCEdAswvdq33HrHV9lChoBkdAcvGMdLg4wWgHS8FoCEdAswwO+49X93V9lChoBkdAcdli8WbgCWgHS8VoCEdAswxBrtVrAXV9lChoBkdAcZA7ngYP5GgHS9xoCEdAswx1WtEG7nV9lChoBkdAcOLTQmeDnWgHS9loCEdAswyn4gzP8nV9lChoBkdAc7gA7PppvmgHS8FoCEdAsw5KIYWLxnV9lChoBkdAcQ9ws5GSZGgHS/loCEdAsw6GjoIOY3V9lChoBkdAcskbhm5DqmgHS8hoCEdAsw63nxJ/X3V9lChoBkdAcIOlKK5082gHS95oCEdAsw7sbPyCnXV9lChoBkdAb4Lr6+FlCmgHS85oCEdAsw8ic2BJ7XV9lChoBkdAcY4QO4G2TmgHS+xoCEdAsw9cHObAlHV9lChoBkdAcjuFnIyTIWgHS9BoCEdAsw+OT3Zf2XV9lChoBkdAcVBudPLxJGgHS8toCEdAsw+91hb4anV9lChoBkdAc3GwxFiKBWgHTQkBaAhHQLMP/NPP9k11fZQoaAZHQHKM2lQ/HHZoB0veaAhHQLMSmTlT3qR1fZQoaAZHQHFuYubqhURoB01/AWgIR0CzEve2E0zkdX2UKGgGR0ByZCrilzltaAdL0WgIR0CzEyoKhL5AdX2UKGgGR0BzMiJl8PWhaAdL+2gIR0CzE2Zy2hIwdX2UKGgGR0Bv59+uvECOaAdL7GgIR0CzE6DpC8e0dX2UKGgGR0BwtG+rU9ZBaAdL/mgIR0CzE9/H93r2dX2UKGgGR0BxlnPE87p3aAdLv2gIR0CzFA4crAgxdX2UKGgGR0ByaceQuEmIaAdL5GgIR0CzFEQ04zacdX2UKGgGR0Bwz0Q04zacaAdL0mgIR0CzFHjurp7kdX2UKGgGR0BzUwwSJ0nxaAdL3WgIR0CzFkS6DoQndX2UKGgGR0Bwd3SJCSieaAdL3GgIR0CzFnjlgc94dX2UKGgGR0BwIE6Mir1eaAdLxmgIR0CzFqwAU+LWdX2UKGgGR0Bx5TMGHHmzaAdNDwFoCEdAsxbyScLBsXV9lChoBkdAcvRCbtqpLmgHTRQBaAhHQLMXN9H+ZPV1fZQoaAZHQG/uxbjcVQBoB0vgaAhHQLMXbF98Z1p1fZQoaAZHQHFAdP1tfoloB0vraAhHQLMXqPwd8zB1fZQoaAZHQHGzyQPqcExoB0u8aAhHQLMX1WUbDMx1fZQoaAZHQHLZTijtXxRoB0v1aAhHQLMYElImPYF1fZQoaAZHQHG35lSS/0xoB0vQaAhHQLMZwC+10DF1fZQoaAZHQHDiXn2ZiNNoB0vsaAhHQLMZ+RUm2LJ1fZQoaAZHQHCf2iHqNZNoB0vfaAhHQLMaL5/b0vp1fZQoaAZHQHGm5jQRf4RoB0vuaAhHQLMaadcjZ+R1fZQoaAZHQHHvc7IT4+NoB0vfaAhHQLMapD6Fds11fZQoaAZHQGzkRPoFFDxoB0vbaAhHQLMa158BuGd1fZQoaAZHQG5lTlLeyiVoB0viaAhHQLMbDWTot+V1fZQoaAZHQHG3bjghr31oB00GAWgIR0CzG0yF49owdX2UKGgGR0BwyWU1Q66raAdL4mgIR0CzG4MhPj4pdX2UKGgGR0BxgYR3/xUeaAdL0mgIR0CzHY//rB0qdX2UKGgGR0ByKMdfb9IgaAdL4WgIR0CzHd+glF+edX2UKGgGR0BwuCIYWLxaaAdL9mgIR0CzHj8ZUDMedX2UKGgGR0BxbSpyZKFqaAdL3mgIR0CzHo/MB6rvdX2UKGgGR0BxonskY4yXaAdL/GgIR0CzHvGHHmzTdX2UKGgGR0Bw5Yo1DSgHaAdL/WgIR0CzH0nBP9DQdX2UKGgGR0Bu/ncBU70WaAdL4GgIR0CzH4A/5ckddX2UKGgGR0BxqfI7vG6xaAdLz2gIR0CzH7RD1GsndX2UKGgGR0BzLV1GLDQ7aAdLzGgIR0CzH+jo2XLNdX2UKGgGR0Byn8EkjX4CaAdLxWgIR0CzIaD6ab4KdX2UKGgGR0Bx5wjHGS6laAdL9WgIR0CzIdtQbdaddX2UKGgGR0Byj6JwbVBlaAdL3mgIR0CzIhXzcynDdX2UKGgGR0BwYLuTibUgaAdLzWgIR0CzIkfEKmbcdX2UKGgGR0BwL1B/qgRLaAdL7WgIR0CzIn8O9WZJdX2UKGgGR0BuEn4yoGY8aAdL2WgIR0CzIrNbLU1AdX2UKGgGR0BwlVWaMJhOaAdL62gIR0CzIu4rOJLvdX2UKGgGR0BxBgN5MURGaAdL6WgIR0CzIygmiQDFdX2UKGgGR0BxVX3PAwfyaAdLxWgIR0CzI1bMxGlRdX2UKGgGR0Bxop4jbBXTaAdL9WgIR0CzJTgdXDFZdX2UKGgGR0BwxX8k2P1daAdL0GgIR0CzJWmfkFOgdX2UKGgGR0BuwfeDWbw0aAdNFgFoCEdAsyWs+t8uz3V9lChoBkdAclkO8TSLImgHS9toCEdAsyXioegctHV9lChoBkdAcx6o3rD632gHS8toCEdAsyYXhZQpF3V9lChoBkdAcKtGbTc7AGgHS99oCEdAsyZMeOn2qXV9lChoBkdAZ+M33Hq/umgHTVkCaAhHQLMm4VrhzeZ1fZQoaAZHQHHwemaYu01oB0u/aAhHQLMol1gpjMF1fZQoaAZHQHEVQ+Y+jdpoB0voaAhHQLMozkN4JNV1fZQoaAZHQHCiQN0/4ZdoB0vnaAhHQLMpBuKXOW11fZQoaAZHQHE/aQeV9ndoB0vNaAhHQLMpRkyDZlF1fZQoaAZHQHDORNqQA+9oB0vRaAhHQLMpjy57PY51fZQoaAZHQHJHtFF2FFloB0vwaAhHQLMp4E6kqMF1fZQoaAZHQHFfLvCuU2VoB0v0aAhHQLMqNTFERap1fZQoaAZHQHDsRjWkJrtoB0vxaAhHQLMqhNXo1UF1fZQoaAZHQHE4P3JxNqRoB0vQaAhHQLMq0CW/rSp1fZQoaAZHQHK/7jPv8ZVoB0vJaAhHQLMrFslLOA11fZQoaAZHQHE8X6InBtVoB0vFaAhHQLMtL7e2uxN1fZQoaAZHQG/wPUKArhBoB0voaAhHQLMtaRfF72N1fZQoaAZHQHIOWhIvrW1oB0vVaAhHQLMtm/GVAzJ1fZQoaAZHQHHGXBYV6/toB0v1aAhHQLMt1JPZZjh1fZQoaAZHQHE8/d2xIJ9oB0v9aAhHQLMuFFOwgT11fZQoaAZHQHC6WkBS1mdoB0vUaAhHQLMuRrFOwgV1fZQoaAZHQHDmyYgJTl1oB0vyaAhHQLMuhDqnm7t1fZQoaAZHQHJc0384xUNoB00aAWgIR0CzLsejM3ZPdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 11660, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.2.1+cu121", "GPU Enabled": "False", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7c254e652b00>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7c254e652b90>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7c254e652c20>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7c254e652cb0>", "_build": "<function ActorCriticPolicy._build at 0x7c254e652d40>", "forward": "<function ActorCriticPolicy.forward at 0x7c254e652dd0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7c254e652e60>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7c254e652ef0>", "_predict": "<function ActorCriticPolicy._predict at 0x7c254e652f80>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7c254e653010>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7c254e6530a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7c254e653130>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7c255c0d0b40>"}, "verbose": 0, "policy_kwargs": {}, "num_timesteps": 1001472, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1712037430648850603, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAEBDLD4D3XK8409YO4Zti7nmRs29fcmMugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0014719999999999178, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVOwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGm8kehf0EqMAWyUTT8BjAF0lEdAoha8gSvkinV9lChoBkdAbxUgyuZCwGgHTR8BaAhHQKIXWVuaWop1fZQoaAZHwEEOguh9LHxoB0vBaAhHQKIXvELpiZx1fZQoaAZHQGy/a11GLDRoB00YAWgIR0CiGFqZUkv9dX2UKGgGR0BwFCwcHWz4aAdNDAFoCEdAohjpv5xionV9lChoBkdAbhETUy57PmgHTZoBaAhHQKIZuAMDwH91fZQoaAZHQFkIlpoK2KFoB03oA2gIR0CiH2GvW6K+dX2UKGgGR0BtJTblA/s3aAdNKQFoCEdAoiAXH/95yHV9lChoBkdAboT+/gzguWgHTTYBaAhHQKIgvPIGQjl1fZQoaAZHwDOlSDRMN+doB007AWgIR0CiIWtGus90dX2UKGgGR0BrqeWBz3h5aAdNIwFoCEdAoiH+d7OVxHV9lChoBkdAa832zv7WNGgHTRMBaAhHQKInAC8OCoV1fZQoaAZHQFOE58BuGbloB03oA2gIR0CiKaUlqrR0dX2UKGgGR0BvYEMoc7yQaAdNKgFoCEdAoipDDye7MHV9lChoBkdAa1WYOUdJa2gHTQ0BaAhHQKIqz7D2rXF1fZQoaAZHQGyy+qR2bG5oB006AWgIR0CiK3yauwHJdX2UKGgGR0Bt0ig2606YaAdNHgFoCEdAoi9dmYjSonV9lChoBkdAa4UvLX+VDGgHTT8BaAhHQKIwB/LDAJt1fZQoaAZHQG3aem3vx6RoB00IAWgIR0CiMJQhwEQodX2UKGgGR0Bru0NhE0BPaAdNBAFoCEdAojEbAFgUlHV9lChoBkdAb97ib2Dg62gHTREBaAhHQKIxp0yP+4t1fZQoaAZHQGumSBshxHZoB008AWgIR0CiMk3kHUtqdX2UKGgGR0BtkvMOf/WEaAdNLgFoCEdAojLp8twrD3V9lChoBkfAXv8Y51eSjmgHTTYBaAhHQKI3GIToMa11fZQoaAZHQGscYi5d4V1oB00HAWgIR0CiN6hM8HObdX2UKGgGR0Bq4s6eXiR5aAdNBgFoCEdAojhFvwVj7XV9lChoBkdAbpoiBXjlxWgHS/ZoCEdAojjKpcX3xnV9lChoBkdAbYwyTpxFRmgHTRABaAhHQKI5WNhmXgN1fZQoaAZHQHCTkmx+rlxoB01JAWgIR0CiOgbXYlIFdX2UKGgGR0BuVGOlwcYJaAdNBwFoCEdAojqONDMNdHV9lChoBkdAWUeu7pV0cWgHTegDaAhHQKJBge6I3zd1fZQoaAZHQERu1eBxxT9oB03oA2gIR0CiQ6YUvf0mdX2UKGgGR0Bg5KkoF3Y+aAdN6ANoCEdAokk6IHkcTHV9lChoBkdAbibiiqQzUWgHTSYBaAhHQKJJ0Mx46fd1fZQoaAZHQGtls90Rvm5oB01qAWgIR0CiSr5RKpT/dX2UKGgGR0Bas1fqoqCpaAdN6ANoCEdAolCJyZKFqXV9lChoBkdAbYrHz6JqI2gHTWIBaAhHQKJRSn3L3bp1fZQoaAZHQHBbLBGhEjRoB00FAWgIR0CiUcsP8Q7LdX2UKGgGR0Bs6/phWo3raAdNAwFoCEdAolJXm7rcCnV9lChoBkdAby9WXC0ngGgHTToBaAhHQKJTACL/CIl1fZQoaAZHP/q90zTF2mpoB0ucaAhHQKJTUgdwNsp1fZQoaAZHQGuqzDGcWj5oB03CAWgIR0CiWJGkWRA9dX2UKGgGR0BrXbPD50r9aAdNoQFoCEdAolnceQuEmXV9lChoBkfAQFO+K0lZ5mgHTScBaAhHQKJarrGipNt1fZQoaAZHQGtKGRV6u4hoB00UAWgIR0CiW0JFb3XadX2UKGgGR0BvRr90ihWYaAdNEQFoCEdAolvMdaMaTHV9lChoBkdAbfd8JD3M6mgHTUwBaAhHQKJceZpBX0Z1fZQoaAZHwDRhZgXuVopoB0uqaAhHQKJc07o0Q9R1fZQoaAZHQGlfk2YOUdJoB00gAWgIR0CiYKhUzbeudX2UKGgGR0BrGPVLBbfQaAdNOAFoCEdAomFFH2AXmHV9lChoBkdAadXugHu7YmgHTRoBaAhHQKJh2gmJFb51fZQoaAZHQGuzOO0b961oB00DAWgIR0CiYmWGATZhdX2UKGgGR0BgBbrkbPyDaAdN6ANoCEdAomSKgZjx1HV9lChoBkdAasLcZ9/jKmgHTQoBaAhHQKJocErXlKd1fZQoaAZHwBbdfXwsoUloB0vZaAhHQKJo4+Sr5qN1fZQoaAZHQFq99itq59VoB03oA2gIR0Ciawa9K28adX2UKGgGR0BZj5JPIn0DaAdN6ANoCEdAonFQEMb3oXV9lChoBkfAS2HYtg8bJmgHTV8BaAhHQKJyZS619fF1fZQoaAZHQGw9PBSDRMNoB00MAWgIR0Cic1MUIsy0dX2UKGgGR0BvG1fiPyTZaAdNNAFoCEdAonQhiZv1lHV9lChoBkdAatFqs2eg+WgHTVgDaAhHQKJ5cxZ+x4Z1fZQoaAZHQHBjWJm/WUdoB01ZAWgIR0Ciers3qAz6dX2UKGgGR0Bbgois4ku6aAdN6ANoCEdAon5YxcmjTXV9lChoBkdAcFDNe+mFamgHTTwBaAhHQKJ/PWIXTE11fZQoaAZHQHBINqpLmIVoB01vAWgIR0Cig2GUnogWdX2UKGgGR0BvygJXyRSxaAdNNQFoCEdAooP/FBIFvHV9lChoBkdAbKOrcTJyQ2gHTUwBaAhHQKKEsyRjjJd1fZQoaAZHQGltu0LMLWtoB00cAWgIR0CihUsJIDoydX2UKGgGR0BsNKYiPhhqaAdNJQFoCEdAooXlhiLEUHV9lChoBkdAbtZrhR64UmgHTU4BaAhHQKKGoc2itaJ1fZQoaAZHwGdEmmce8wpoB00bAWgIR0CihzzXjENwdX2UKGgGR0Bwm8yKvV3EaAdNSAFoCEdAooy2DWbw0HV9lChoBkdAbkKB8QZn+WgHTQ4BaAhHQKKNRz5oGpx1fZQoaAZHQGzu0mdAgPpoB00bAWgIR0CijdaHbh3rdX2UKGgGR8BCdQ7kn1FpaAdL2GgIR0CijkeCK77LdX2UKGgGR8AyRloUSIxhaAdLtmgIR0CijqZ1V5rydX2UKGgGR0BtpwW3z+WGaAdNAAFoCEdAoo8nEhq0t3V9lChoBkdAbhmGtZFG5WgHTQ4BaAhHQKKPtbLU1AJ1fZQoaAZHQGvvlbeMyadoB00CAWgIR0CikEXOv+wUdX2UKGgGR0BrCbtJFspHaAdNFgFoCEdAopRizw+dLHV9lChoBkdAVTzOIInjQ2gHTegDaAhHQKKWhXLeQ+51fZQoaAZHQGy9bEP1+RZoB01nAWgIR0Cil0TOoo/idX2UKGgGR0BwCUc81XNkaAdNCwFoCEdAopfXPzFuN3V9lChoBkdAWo3nHNorWmgHTegDaAhHQKKdXyq+8Gt1fZQoaAZHQGwRh4t6HCZoB00fAWgIR0Cinf/JV81GdX2UKGgGR0Buq6Kk2xY8aAdNTAFoCEdAop6oqLCN0nV9lChoBkfALAGYBvJiiWgHTRwBaAhHQKKfPXuE25x1fZQoaAZHQGsdeEZiuuBoB00SAWgIR0Cin8/iPyTZdX2UKGgGR8AZGRISUTtcaAdNOwFoCEdAoqUzzoUzsXV9lChoBkfAOaXlGPPszGgHS6xoCEdAoqWhPoFFD3V9lChoBkdAblJWvr4WUWgHS/9oCEdAoqYxiPQv6HV9lChoBkdAb7j9ehPCVWgHTQcBaAhHQKKmuuFpPAR1fZQoaAZHQG81ynDR+jNoB001AWgIR0Cip2EFGG21dX2UKGgGR0Bq+T8iwB5paAdNHAFoCEdAoqgG9DhLoXV9lChoBkdAbq/+0gKWs2gHTRMBaAhHQKKonZpztC11fZQoaAZHQGvpEeIVM25oB00HAWgIR0CiqSxO1v2odX2UKGgGR0BuahVn27FsaAdNNAFoCEdAoq0YS13MZHV9lChoBkfANo/jGT9sJ2gHTQYBaAhHQKKtmyjYZl51fZQoaAZHQGsQ8HfMwDhoB00KAWgIR0CiriqebutwdX2UKGgGR0Bw5/IZIg/1aAdNXAFoCEdAoq7v2GqPwXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 5870, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.2.1+cu121", "GPU Enabled": "False", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:095cb0f1fd7a91ccdd1b52b8144f6f49af38b71f9109dde8886efe2776cb1428
|
3 |
+
size 146905
|
ppo-LunarLander-v2/data
CHANGED
@@ -4,34 +4,34 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"extract_features": "<function ActorCriticPolicy.extract_features at
|
14 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
15 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
16 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
17 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
18 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
-
"_abc_impl": "<_abc._abc_data object at
|
21 |
},
|
22 |
"verbose": 0,
|
23 |
"policy_kwargs": {},
|
24 |
-
"num_timesteps":
|
25 |
-
"_total_timesteps":
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
-
"start_time":
|
30 |
-
"learning_rate": 0.
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
-
":serialized:": "
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -41,17 +41,17 @@
|
|
41 |
"_episode_num": 0,
|
42 |
"use_sde": false,
|
43 |
"sde_sample_freq": -1,
|
44 |
-
"_current_progress_remaining": -0.
|
45 |
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
-
":serialized:": "
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
52 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
},
|
54 |
-
"_n_updates":
|
55 |
"observation_space": {
|
56 |
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7c254e652b00>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7c254e652b90>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7c254e652c20>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7c254e652cb0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7c254e652d40>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7c254e652dd0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7c254e652e60>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7c254e652ef0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7c254e652f80>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7c254e653010>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7c254e6530a0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7c254e653130>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7c255c0d0b40>"
|
21 |
},
|
22 |
"verbose": 0,
|
23 |
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1001472,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
+
"start_time": 1712037430648850603,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAEBDLD4D3XK8409YO4Zti7nmRs29fcmMugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
41 |
"_episode_num": 0,
|
42 |
"use_sde": false,
|
43 |
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.0014719999999999178,
|
45 |
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVOwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGm8kehf0EqMAWyUTT8BjAF0lEdAoha8gSvkinV9lChoBkdAbxUgyuZCwGgHTR8BaAhHQKIXWVuaWop1fZQoaAZHwEEOguh9LHxoB0vBaAhHQKIXvELpiZx1fZQoaAZHQGy/a11GLDRoB00YAWgIR0CiGFqZUkv9dX2UKGgGR0BwFCwcHWz4aAdNDAFoCEdAohjpv5xionV9lChoBkdAbhETUy57PmgHTZoBaAhHQKIZuAMDwH91fZQoaAZHQFkIlpoK2KFoB03oA2gIR0CiH2GvW6K+dX2UKGgGR0BtJTblA/s3aAdNKQFoCEdAoiAXH/95yHV9lChoBkdAboT+/gzguWgHTTYBaAhHQKIgvPIGQjl1fZQoaAZHwDOlSDRMN+doB007AWgIR0CiIWtGus90dX2UKGgGR0BrqeWBz3h5aAdNIwFoCEdAoiH+d7OVxHV9lChoBkdAa832zv7WNGgHTRMBaAhHQKInAC8OCoV1fZQoaAZHQFOE58BuGbloB03oA2gIR0CiKaUlqrR0dX2UKGgGR0BvYEMoc7yQaAdNKgFoCEdAoipDDye7MHV9lChoBkdAa1WYOUdJa2gHTQ0BaAhHQKIqz7D2rXF1fZQoaAZHQGyy+qR2bG5oB006AWgIR0CiK3yauwHJdX2UKGgGR0Bt0ig2606YaAdNHgFoCEdAoi9dmYjSonV9lChoBkdAa4UvLX+VDGgHTT8BaAhHQKIwB/LDAJt1fZQoaAZHQG3aem3vx6RoB00IAWgIR0CiMJQhwEQodX2UKGgGR0Bru0NhE0BPaAdNBAFoCEdAojEbAFgUlHV9lChoBkdAb97ib2Dg62gHTREBaAhHQKIxp0yP+4t1fZQoaAZHQGumSBshxHZoB008AWgIR0CiMk3kHUtqdX2UKGgGR0BtkvMOf/WEaAdNLgFoCEdAojLp8twrD3V9lChoBkfAXv8Y51eSjmgHTTYBaAhHQKI3GIToMa11fZQoaAZHQGscYi5d4V1oB00HAWgIR0CiN6hM8HObdX2UKGgGR0Bq4s6eXiR5aAdNBgFoCEdAojhFvwVj7XV9lChoBkdAbpoiBXjlxWgHS/ZoCEdAojjKpcX3xnV9lChoBkdAbYwyTpxFRmgHTRABaAhHQKI5WNhmXgN1fZQoaAZHQHCTkmx+rlxoB01JAWgIR0CiOgbXYlIFdX2UKGgGR0BuVGOlwcYJaAdNBwFoCEdAojqONDMNdHV9lChoBkdAWUeu7pV0cWgHTegDaAhHQKJBge6I3zd1fZQoaAZHQERu1eBxxT9oB03oA2gIR0CiQ6YUvf0mdX2UKGgGR0Bg5KkoF3Y+aAdN6ANoCEdAokk6IHkcTHV9lChoBkdAbibiiqQzUWgHTSYBaAhHQKJJ0Mx46fd1fZQoaAZHQGtls90Rvm5oB01qAWgIR0CiSr5RKpT/dX2UKGgGR0Bas1fqoqCpaAdN6ANoCEdAolCJyZKFqXV9lChoBkdAbYrHz6JqI2gHTWIBaAhHQKJRSn3L3bp1fZQoaAZHQHBbLBGhEjRoB00FAWgIR0CiUcsP8Q7LdX2UKGgGR0Bs6/phWo3raAdNAwFoCEdAolJXm7rcCnV9lChoBkdAby9WXC0ngGgHTToBaAhHQKJTACL/CIl1fZQoaAZHP/q90zTF2mpoB0ucaAhHQKJTUgdwNsp1fZQoaAZHQGuqzDGcWj5oB03CAWgIR0CiWJGkWRA9dX2UKGgGR0BrXbPD50r9aAdNoQFoCEdAolnceQuEmXV9lChoBkfAQFO+K0lZ5mgHTScBaAhHQKJarrGipNt1fZQoaAZHQGtKGRV6u4hoB00UAWgIR0CiW0JFb3XadX2UKGgGR0BvRr90ihWYaAdNEQFoCEdAolvMdaMaTHV9lChoBkdAbfd8JD3M6mgHTUwBaAhHQKJceZpBX0Z1fZQoaAZHwDRhZgXuVopoB0uqaAhHQKJc07o0Q9R1fZQoaAZHQGlfk2YOUdJoB00gAWgIR0CiYKhUzbeudX2UKGgGR0BrGPVLBbfQaAdNOAFoCEdAomFFH2AXmHV9lChoBkdAadXugHu7YmgHTRoBaAhHQKJh2gmJFb51fZQoaAZHQGuzOO0b961oB00DAWgIR0CiYmWGATZhdX2UKGgGR0BgBbrkbPyDaAdN6ANoCEdAomSKgZjx1HV9lChoBkdAasLcZ9/jKmgHTQoBaAhHQKJocErXlKd1fZQoaAZHwBbdfXwsoUloB0vZaAhHQKJo4+Sr5qN1fZQoaAZHQFq99itq59VoB03oA2gIR0Ciawa9K28adX2UKGgGR0BZj5JPIn0DaAdN6ANoCEdAonFQEMb3oXV9lChoBkfAS2HYtg8bJmgHTV8BaAhHQKJyZS619fF1fZQoaAZHQGw9PBSDRMNoB00MAWgIR0Cic1MUIsy0dX2UKGgGR0BvG1fiPyTZaAdNNAFoCEdAonQhiZv1lHV9lChoBkdAatFqs2eg+WgHTVgDaAhHQKJ5cxZ+x4Z1fZQoaAZHQHBjWJm/WUdoB01ZAWgIR0Ciers3qAz6dX2UKGgGR0Bbgois4ku6aAdN6ANoCEdAon5YxcmjTXV9lChoBkdAcFDNe+mFamgHTTwBaAhHQKJ/PWIXTE11fZQoaAZHQHBINqpLmIVoB01vAWgIR0Cig2GUnogWdX2UKGgGR0BvygJXyRSxaAdNNQFoCEdAooP/FBIFvHV9lChoBkdAbKOrcTJyQ2gHTUwBaAhHQKKEsyRjjJd1fZQoaAZHQGltu0LMLWtoB00cAWgIR0CihUsJIDoydX2UKGgGR0BsNKYiPhhqaAdNJQFoCEdAooXlhiLEUHV9lChoBkdAbtZrhR64UmgHTU4BaAhHQKKGoc2itaJ1fZQoaAZHwGdEmmce8wpoB00bAWgIR0CihzzXjENwdX2UKGgGR0Bwm8yKvV3EaAdNSAFoCEdAooy2DWbw0HV9lChoBkdAbkKB8QZn+WgHTQ4BaAhHQKKNRz5oGpx1fZQoaAZHQGzu0mdAgPpoB00bAWgIR0CijdaHbh3rdX2UKGgGR8BCdQ7kn1FpaAdL2GgIR0CijkeCK77LdX2UKGgGR8AyRloUSIxhaAdLtmgIR0CijqZ1V5rydX2UKGgGR0BtpwW3z+WGaAdNAAFoCEdAoo8nEhq0t3V9lChoBkdAbhmGtZFG5WgHTQ4BaAhHQKKPtbLU1AJ1fZQoaAZHQGvvlbeMyadoB00CAWgIR0CikEXOv+wUdX2UKGgGR0BrCbtJFspHaAdNFgFoCEdAopRizw+dLHV9lChoBkdAVTzOIInjQ2gHTegDaAhHQKKWhXLeQ+51fZQoaAZHQGy9bEP1+RZoB01nAWgIR0Cil0TOoo/idX2UKGgGR0BwCUc81XNkaAdNCwFoCEdAopfXPzFuN3V9lChoBkdAWo3nHNorWmgHTegDaAhHQKKdXyq+8Gt1fZQoaAZHQGwRh4t6HCZoB00fAWgIR0Cinf/JV81GdX2UKGgGR0Buq6Kk2xY8aAdNTAFoCEdAop6oqLCN0nV9lChoBkfALAGYBvJiiWgHTRwBaAhHQKKfPXuE25x1fZQoaAZHQGsdeEZiuuBoB00SAWgIR0Cin8/iPyTZdX2UKGgGR8AZGRISUTtcaAdNOwFoCEdAoqUzzoUzsXV9lChoBkfAOaXlGPPszGgHS6xoCEdAoqWhPoFFD3V9lChoBkdAblJWvr4WUWgHS/9oCEdAoqYxiPQv6HV9lChoBkdAb7j9ehPCVWgHTQcBaAhHQKKmuuFpPAR1fZQoaAZHQG81ynDR+jNoB001AWgIR0Cip2EFGG21dX2UKGgGR0Bq+T8iwB5paAdNHAFoCEdAoqgG9DhLoXV9lChoBkdAbq/+0gKWs2gHTRMBaAhHQKKonZpztC11fZQoaAZHQGvpEeIVM25oB00HAWgIR0CiqSxO1v2odX2UKGgGR0BuahVn27FsaAdNNAFoCEdAoq0YS13MZHV9lChoBkfANo/jGT9sJ2gHTQYBaAhHQKKtmyjYZl51fZQoaAZHQGsQ8HfMwDhoB00KAWgIR0CiriqebutwdX2UKGgGR0Bw5/IZIg/1aAdNXAFoCEdAoq7v2GqPwXVlLg=="
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
52 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
},
|
54 |
+
"_n_updates": 5870,
|
55 |
"observation_space": {
|
56 |
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
ppo-LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 87978
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:316cb20011851b61e7e4396e023240a825b8c4ef58bf9fa1b68f4f6d62aa7687
|
3 |
size 87978
|
ppo-LunarLander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43634
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c27d4ab3e8b8ce18b01fa497a4ab1c9e70c7826d29a0351f34aaa6ca8b1e6ab9
|
3 |
size 43634
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 199.7099672, "std_reward": 82.57730328233049, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-04-02T06:30:42.871820"}
|