--- library_name: transformers license: apache-2.0 base_model: google-bert/bert-base-multilingual-uncased tags: - generated_from_trainer metrics: - f1 - precision model-index: - name: bert-fraud-classification-test results: [] --- [Visualize in Weights & Biases](https://wandb.ai/sandeshrajx/ultron-nlp/runs/dti4tuxz) [Visualize in Weights & Biases](https://wandb.ai/sandeshrajx/ultron-nlp/runs/dti4tuxz) # bert-fraud-classification-test This model is a fine-tuned version of [google-bert/bert-base-multilingual-uncased](https://huggingface.co/google-bert/bert-base-multilingual-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3850 - F1: 0.7886 - Precision: 0.8400 - Val Accuracy: 0.8429 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 44 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 88 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Precision | Val Accuracy | |:-------------:|:------:|:----:|:---------------:|:------:|:---------:|:------------:| | 0.5784 | 0.1386 | 40 | 0.4995 | 0.6845 | 0.8251 | 0.7873 | | 0.4545 | 0.2773 | 80 | 0.4295 | 0.7430 | 0.8504 | 0.8200 | | 0.4566 | 0.4159 | 120 | 0.4116 | 0.7564 | 0.8483 | 0.8266 | | 0.4468 | 0.5546 | 160 | 0.4149 | 0.7366 | 0.8827 | 0.8217 | | 0.3454 | 0.6932 | 200 | 0.4062 | 0.7442 | 0.8812 | 0.8254 | | 0.3333 | 0.8319 | 240 | 0.4046 | 0.7475 | 0.8993 | 0.8296 | | 0.4618 | 0.9705 | 280 | 0.3973 | 0.7797 | 0.8279 | 0.8358 | | 0.3581 | 1.1092 | 320 | 0.3869 | 0.7843 | 0.8431 | 0.8410 | | 0.3946 | 1.2478 | 360 | 0.3869 | 0.7823 | 0.8471 | 0.8405 | | 0.3263 | 1.3865 | 400 | 0.3875 | 0.7850 | 0.8379 | 0.8405 | | 0.31 | 1.5251 | 440 | 0.3907 | 0.7721 | 0.8835 | 0.8404 | | 0.2547 | 1.6638 | 480 | 0.3822 | 0.7855 | 0.8561 | 0.8437 | | 0.2613 | 1.8024 | 520 | 0.3886 | 0.7883 | 0.8346 | 0.8418 | | 0.3142 | 1.9411 | 560 | 0.3850 | 0.7886 | 0.8400 | 0.8429 | ### Framework versions - Transformers 4.46.0.dev0 - Pytorch 2.4.0+cu121 - Datasets 3.0.1 - Tokenizers 0.20.0