Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
import tiktoken
|
| 4 |
+
from supplementary import GPTModel, generate_text_simple
|
| 5 |
+
|
| 6 |
+
# Load model configuration
|
| 7 |
+
GPT_CONFIG_124M = {
|
| 8 |
+
"vocab_size": 50257,
|
| 9 |
+
"context_length": 1024,
|
| 10 |
+
"emb_dim": 768,
|
| 11 |
+
"n_heads": 12,
|
| 12 |
+
"n_layers": 12,
|
| 13 |
+
"drop_rate": 0.1,
|
| 14 |
+
"qkv_bias": False
|
| 15 |
+
}
|
| 16 |
+
|
| 17 |
+
# Initialize model
|
| 18 |
+
model = GPTModel(GPT_CONFIG_124M)
|
| 19 |
+
|
| 20 |
+
# Load the trained weights
|
| 21 |
+
model.load_state_dict(torch.load("my_gpt_model.pth", map_location=torch.device('cpu')))
|
| 22 |
+
model.eval()
|
| 23 |
+
|
| 24 |
+
tokenizer = tiktoken.get_encoding("gpt2")
|
| 25 |
+
|
| 26 |
+
def generate(prompt, max_new_tokens):
|
| 27 |
+
token_ids = tokenizer.encode(prompt)
|
| 28 |
+
input_ids = torch.tensor(token_ids).unsqueeze(0)
|
| 29 |
+
output_ids = generate_text_simple(
|
| 30 |
+
model=model,
|
| 31 |
+
idx=input_ids,
|
| 32 |
+
max_new_tokens=max_new_tokens,
|
| 33 |
+
context_size=GPT_CONFIG_124M["context_length"]
|
| 34 |
+
)
|
| 35 |
+
return tokenizer.decode(output_ids.squeeze(0).tolist())
|
| 36 |
+
|
| 37 |
+
iface = gr.Interface(
|
| 38 |
+
fn=generate,
|
| 39 |
+
inputs=[
|
| 40 |
+
gr.Textbox(label="Prompt"),
|
| 41 |
+
gr.Slider(minimum=1, maximum=100, value=20, step=1, label="Max New Tokens")
|
| 42 |
+
],
|
| 43 |
+
outputs=gr.Textbox(label="Generated Text"),
|
| 44 |
+
title="SamGPT Text Generation",
|
| 45 |
+
description="Enter a prompt to generate text with the custom language model."
|
| 46 |
+
)
|
| 47 |
+
|
| 48 |
+
iface.launch()
|