samwell commited on
Commit
5d9da5c
·
verified ·
1 Parent(s): 2b84cbd

Create supplementary.py

Browse files
Files changed (1) hide show
  1. supplementary.py +312 -0
supplementary.py ADDED
@@ -0,0 +1,312 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Sebastian Raschka under Apache License 2.0 (see LICENSE.txt).
2
+ # Source for "Build a Large Language Model From Scratch"
3
+ # - https://www.manning.com/books/build-a-large-language-model-from-scratch
4
+ # Code: https://github.com/rasbt/LLMs-from-scratch
5
+
6
+ import matplotlib.pyplot as plt
7
+ from matplotlib.ticker import MaxNLocator
8
+ import tiktoken
9
+ import torch
10
+ import torch.nn as nn
11
+ from torch.utils.data import Dataset, DataLoader
12
+
13
+
14
+ class GPTDatasetV1(Dataset):
15
+ def __init__(self, txt, tokenizer, max_length, stride):
16
+ self.input_ids = []
17
+ self.target_ids = []
18
+
19
+ # Tokenize the entire text
20
+ token_ids = tokenizer.encode(txt, allowed_special={"<|endoftext|>"})
21
+
22
+ # Use a sliding window to chunk the book into overlapping sequences of max_length
23
+ for i in range(0, len(token_ids) - max_length, stride):
24
+ input_chunk = token_ids[i:i + max_length]
25
+ target_chunk = token_ids[i + 1: i + max_length + 1]
26
+ self.input_ids.append(torch.tensor(input_chunk))
27
+ self.target_ids.append(torch.tensor(target_chunk))
28
+
29
+ def __len__(self):
30
+ return len(self.input_ids)
31
+
32
+ def __getitem__(self, idx):
33
+ return self.input_ids[idx], self.target_ids[idx]
34
+
35
+
36
+ def create_dataloader_v1(txt, batch_size=4, max_length=256,
37
+ stride=128, shuffle=True, drop_last=True, num_workers=0):
38
+ # Initialize the tokenizer
39
+ tokenizer = tiktoken.get_encoding("gpt2")
40
+
41
+ # Create dataset
42
+ dataset = GPTDatasetV1(txt, tokenizer, max_length, stride)
43
+
44
+ # Create dataloader
45
+ dataloader = DataLoader(
46
+ dataset, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last, num_workers=num_workers)
47
+
48
+ return dataloader
49
+
50
+
51
+ class MultiHeadAttention(nn.Module):
52
+ def __init__(self, d_in, d_out, context_length, dropout, num_heads, qkv_bias=False):
53
+ super().__init__()
54
+ assert d_out % num_heads == 0, "d_out must be divisible by num_heads"
55
+
56
+ self.d_out = d_out
57
+ self.num_heads = num_heads
58
+ self.head_dim = d_out // num_heads # Reduce the projection dim to match desired output dim
59
+
60
+ self.W_query = nn.Linear(d_in, d_out, bias=qkv_bias)
61
+ self.W_key = nn.Linear(d_in, d_out, bias=qkv_bias)
62
+ self.W_value = nn.Linear(d_in, d_out, bias=qkv_bias)
63
+ self.out_proj = nn.Linear(d_out, d_out) # Linear layer to combine head outputs
64
+ self.dropout = nn.Dropout(dropout)
65
+ self.register_buffer('mask', torch.triu(torch.ones(context_length, context_length), diagonal=1))
66
+
67
+ def forward(self, x):
68
+ b, num_tokens, d_in = x.shape
69
+
70
+ keys = self.W_key(x) # Shape: (b, num_tokens, d_out)
71
+ queries = self.W_query(x)
72
+ values = self.W_value(x)
73
+
74
+ # We implicitly split the matrix by adding a `num_heads` dimension
75
+ # Unroll last dim: (b, num_tokens, d_out) -> (b, num_tokens, num_heads, head_dim)
76
+ keys = keys.view(b, num_tokens, self.num_heads, self.head_dim)
77
+ values = values.view(b, num_tokens, self.num_heads, self.head_dim)
78
+ queries = queries.view(b, num_tokens, self.num_heads, self.head_dim)
79
+
80
+ # Transpose: (b, num_tokens, num_heads, head_dim) -> (b, num_heads, num_tokens, head_dim)
81
+ keys = keys.transpose(1, 2)
82
+ queries = queries.transpose(1, 2)
83
+ values = values.transpose(1, 2)
84
+
85
+ # Compute scaled dot-product attention (aka self-attention) with a causal mask
86
+ attn_scores = queries @ keys.transpose(2, 3) # Dot product for each head
87
+
88
+ # Original mask truncated to the number of tokens and converted to boolean
89
+ mask_bool = self.mask.bool()[:num_tokens, :num_tokens]
90
+
91
+ # Use the mask to fill attention scores
92
+ attn_scores.masked_fill_(mask_bool, -torch.inf)
93
+
94
+ attn_weights = torch.softmax(attn_scores / keys.shape[-1]**0.5, dim=-1)
95
+ attn_weights = self.dropout(attn_weights)
96
+
97
+ # Shape: (b, num_tokens, num_heads, head_dim)
98
+ context_vec = (attn_weights @ values).transpose(1, 2)
99
+
100
+ # Combine heads, where self.d_out = self.num_heads * self.head_dim
101
+ context_vec = context_vec.contiguous().view(b, num_tokens, self.d_out)
102
+ context_vec = self.out_proj(context_vec) # optional projection
103
+
104
+ return context_vec
105
+
106
+
107
+ class LayerNorm(nn.Module):
108
+ def __init__(self, emb_dim):
109
+ super().__init__()
110
+ self.eps = 1e-5
111
+ self.scale = nn.Parameter(torch.ones(emb_dim))
112
+ self.shift = nn.Parameter(torch.zeros(emb_dim))
113
+
114
+ def forward(self, x):
115
+ mean = x.mean(dim=-1, keepdim=True)
116
+ var = x.var(dim=-1, keepdim=True, unbiased=False)
117
+ norm_x = (x - mean) / torch.sqrt(var + self.eps)
118
+ return self.scale * norm_x + self.shift
119
+
120
+
121
+ class GELU(nn.Module):
122
+ def __init__(self):
123
+ super().__init__()
124
+
125
+ def forward(self, x):
126
+ return 0.5 * x * (1 + torch.tanh(
127
+ torch.sqrt(torch.tensor(2.0 / torch.pi)) *
128
+ (x + 0.044715 * torch.pow(x, 3))
129
+ ))
130
+
131
+
132
+ class FeedForward(nn.Module):
133
+ def __init__(self, cfg):
134
+ super().__init__()
135
+ self.layers = nn.Sequential(
136
+ nn.Linear(cfg["emb_dim"], 4 * cfg["emb_dim"]),
137
+ GELU(),
138
+ nn.Linear(4 * cfg["emb_dim"], cfg["emb_dim"]),
139
+ )
140
+
141
+ def forward(self, x):
142
+ return self.layers(x)
143
+
144
+
145
+ class TransformerBlock(nn.Module):
146
+ def __init__(self, cfg):
147
+ super().__init__()
148
+ self.att = MultiHeadAttention(
149
+ d_in=cfg["emb_dim"],
150
+ d_out=cfg["emb_dim"],
151
+ context_length=cfg["context_length"],
152
+ num_heads=cfg["n_heads"],
153
+ dropout=cfg["drop_rate"],
154
+ qkv_bias=cfg["qkv_bias"])
155
+ self.ff = FeedForward(cfg)
156
+ self.norm1 = LayerNorm(cfg["emb_dim"])
157
+ self.norm2 = LayerNorm(cfg["emb_dim"])
158
+ self.drop_shortcut = nn.Dropout(cfg["drop_rate"])
159
+
160
+ def forward(self, x):
161
+ # Shortcut connection for attention block
162
+ shortcut = x
163
+ x = self.norm1(x)
164
+ x = self.att(x) # Shape [batch_size, num_tokens, emb_size]
165
+ x = self.drop_shortcut(x)
166
+ x = x + shortcut # Add the original input back
167
+
168
+ # Shortcut connection for feed forward block
169
+ shortcut = x
170
+ x = self.norm2(x)
171
+ x = self.ff(x)
172
+ x = self.drop_shortcut(x)
173
+ x = x + shortcut # Add the original input back
174
+
175
+ return x
176
+
177
+
178
+ class GPTModel(nn.Module):
179
+ def __init__(self, cfg):
180
+ super().__init__()
181
+ self.tok_emb = nn.Embedding(cfg["vocab_size"], cfg["emb_dim"])
182
+ self.pos_emb = nn.Embedding(cfg["context_length"], cfg["emb_dim"])
183
+ self.drop_emb = nn.Dropout(cfg["drop_rate"])
184
+
185
+ self.trf_blocks = nn.Sequential(
186
+ *[TransformerBlock(cfg) for _ in range(cfg["n_layers"])])
187
+
188
+ self.final_norm = LayerNorm(cfg["emb_dim"])
189
+ self.out_head = nn.Linear(
190
+ cfg["emb_dim"], cfg["vocab_size"], bias=False
191
+ )
192
+
193
+ def forward(self, in_idx):
194
+ batch_size, seq_len = in_idx.shape
195
+ tok_embeds = self.tok_emb(in_idx)
196
+ pos_embeds = self.pos_emb(torch.arange(seq_len, device=in_idx.device))
197
+ x = tok_embeds + pos_embeds # Shape [batch_size, num_tokens, emb_size]
198
+ x = self.drop_emb(x)
199
+ x = self.trf_blocks(x)
200
+ x = self.final_norm(x)
201
+ logits = self.out_head(x)
202
+ return logits
203
+
204
+
205
+ def calc_loss_batch(input_batch, target_batch, model, device):
206
+ input_batch, target_batch = input_batch.to(device), target_batch.to(device)
207
+ logits = model(input_batch)
208
+ loss = torch.nn.functional.cross_entropy(logits.flatten(0, 1), target_batch.flatten())
209
+ return loss
210
+
211
+
212
+ def calc_loss_loader(data_loader, model, device, num_batches=None):
213
+ total_loss = 0.
214
+ if len(data_loader) == 0:
215
+ return float("nan")
216
+ elif num_batches is None:
217
+ num_batches = len(data_loader)
218
+ else:
219
+ # Reduce the number of batches to match the total number of batches in the data loader
220
+ # if num_batches exceeds the number of batches in the data loader
221
+ num_batches = min(num_batches, len(data_loader))
222
+ for i, (input_batch, target_batch) in enumerate(data_loader):
223
+ if i < num_batches:
224
+ loss = calc_loss_batch(input_batch, target_batch, model, device)
225
+ total_loss += loss.item()
226
+ else:
227
+ break
228
+ return total_loss / num_batches
229
+
230
+
231
+ def evaluate_model(model, train_loader, val_loader, device, eval_iter):
232
+ model.eval()
233
+ with torch.no_grad():
234
+ train_loss = calc_loss_loader(train_loader, model, device, num_batches=eval_iter)
235
+ val_loss = calc_loss_loader(val_loader, model, device, num_batches=eval_iter)
236
+ model.train()
237
+ return train_loss, val_loss
238
+
239
+
240
+ def text_to_token_ids(text, tokenizer):
241
+ encoded = tokenizer.encode(text, allowed_special={'<|endoftext|>'})
242
+ encoded_tensor = torch.tensor(encoded).unsqueeze(0) # add batch dimension
243
+ return encoded_tensor
244
+
245
+
246
+ def token_ids_to_text(token_ids, tokenizer):
247
+ flat = token_ids.squeeze(0) # remove batch dimension
248
+ return tokenizer.decode(flat.tolist())
249
+
250
+
251
+ def generate_and_print_sample(model, tokenizer, device, start_context):
252
+ model.eval()
253
+ context_size = model.pos_emb.weight.shape[0]
254
+ encoded = text_to_token_ids(start_context, tokenizer).to(device)
255
+ with torch.no_grad():
256
+ token_ids = generate_text_simple(
257
+ model=model, idx=encoded,
258
+ max_new_tokens=50, context_size=context_size
259
+ )
260
+ decoded_text = token_ids_to_text(token_ids, tokenizer)
261
+ print(decoded_text.replace("\n", " ")) # Compact print format
262
+ model.train()
263
+
264
+
265
+ def plot_losses(epochs_seen, tokens_seen, train_losses, val_losses):
266
+ fig, ax1 = plt.subplots(figsize=(5, 3))
267
+
268
+ # Plot training and validation loss against epochs
269
+ ax1.plot(epochs_seen, train_losses, label="Training loss")
270
+ ax1.plot(epochs_seen, val_losses, linestyle="-.", label="Validation loss")
271
+ ax1.set_xlabel("Epochs")
272
+ ax1.set_ylabel("Loss")
273
+ ax1.legend(loc="upper right")
274
+ ax1.xaxis.set_major_locator(MaxNLocator(integer=True)) # only show integer labels on x-axis
275
+
276
+ # Create a second x-axis for tokens seen
277
+ ax2 = ax1.twiny() # Create a second x-axis that shares the same y-axis
278
+ ax2.plot(tokens_seen, train_losses, alpha=0) # Invisible plot for aligning ticks
279
+ ax2.set_xlabel("Tokens seen")
280
+
281
+ fig.tight_layout() # Adjust layout to make room
282
+ plt.savefig("loss-plot.pdf")
283
+ plt.show()
284
+
285
+
286
+ def generate_text_simple(model, idx, max_new_tokens, context_size):
287
+ # idx is (batch, n_tokens) array of indices in the current context
288
+ for _ in range(max_new_tokens):
289
+
290
+ # Crop current context if it exceeds the supported context size
291
+ # E.g., if LLM supports only 5 tokens, and the context size is 10
292
+ # then only the last 5 tokens are used as context
293
+ idx_cond = idx[:, -context_size:]
294
+
295
+ # Get the predictions
296
+ with torch.no_grad():
297
+ logits = model(idx_cond)
298
+
299
+ # Focus only on the last time step
300
+ # (batch, n_tokens, vocab_size) becomes (batch, vocab_size)
301
+ logits = logits[:, -1, :]
302
+
303
+ # Apply softmax to get probabilities
304
+ probas = torch.softmax(logits, dim=-1) # (batch, vocab_size)
305
+
306
+ # Get the idx of the vocab entry with the highest probability value
307
+ idx_next = torch.argmax(probas, dim=-1, keepdim=True) # (batch, 1)
308
+
309
+ # Append sampled index to the running sequence
310
+ idx = torch.cat((idx, idx_next), dim=1) # (batch, n_tokens+1)
311
+
312
+ return idx