File size: 1,809 Bytes
6c52250 7f42010 6c52250 7f42010 6c52250 7f42010 6c52250 7f42010 6c52250 7f42010 6c52250 7f42010 6c52250 7f42010 6c52250 7f42010 6c52250 7f42010 6c52250 7f42010 6c52250 7f42010 6c52250 7f42010 6c52250 7f42010 6c52250 7f42010 6c52250 7f42010 6c52250 7f42010 6c52250 7f42010 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 |
---
base_model: samanjoy2/bn2ipa_TwoBraincells
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: bn2ipa_TwoBraincells
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bn2ipa_TwoBraincells
This model is a fine-tuned version of [samanjoy2/bn2ipa_TwoBraincells](https://huggingface.co/samanjoy2/bn2ipa_TwoBraincells) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0001
- Wer: 0.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 4
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.0454 | 1.23 | 100 | 0.0105 | 0.0283 |
| 0.0151 | 2.47 | 200 | 0.0024 | 0.0068 |
| 0.0052 | 3.7 | 300 | 0.0013 | 0.0025 |
| 0.0035 | 4.94 | 400 | 0.0005 | 0.0012 |
| 0.0013 | 6.17 | 500 | 0.0001 | 0.0 |
| 0.0009 | 7.41 | 600 | 0.0003 | 0.0003 |
| 0.0015 | 8.64 | 700 | 0.0001 | 0.0 |
| 0.0007 | 9.88 | 800 | 0.0001 | 0.0 |
### Framework versions
- Transformers 4.38.1
- Pytorch 2.1.2
- Datasets 2.1.0
- Tokenizers 0.15.2
|