--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: isl-nodel results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.7540407589599438 --- # isl-nodel This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.9554 - Accuracy: 0.7540 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.6213 | 1.0 | 89 | 2.3886 | 0.6128 | | 1.66 | 2.0 | 178 | 1.5769 | 0.7119 | | 1.3588 | 3.0 | 267 | 1.3264 | 0.7358 | | 1.1062 | 4.0 | 356 | 1.1833 | 0.7386 | | 1.1883 | 5.0 | 445 | 1.1025 | 0.7442 | | 1.159 | 6.0 | 534 | 1.0324 | 0.7505 | | 0.9934 | 7.0 | 623 | 0.9626 | 0.7674 | | 0.8885 | 8.0 | 712 | 1.0080 | 0.7435 | | 0.9325 | 9.0 | 801 | 0.9395 | 0.7681 | | 0.9254 | 10.0 | 890 | 0.9554 | 0.7540 | ### Framework versions - Transformers 4.27.4 - Pytorch 2.0.0+cu118 - Datasets 2.11.0 - Tokenizers 0.13.3