sakethchalla commited on
Commit
ab25e9e
·
1 Parent(s): 297f5cd

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +86 -0
README.md ADDED
@@ -0,0 +1,86 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - imagefolder
7
+ metrics:
8
+ - accuracy
9
+ model-index:
10
+ - name: isl-model
11
+ results:
12
+ - task:
13
+ name: Image Classification
14
+ type: image-classification
15
+ dataset:
16
+ name: imagefolder
17
+ type: imagefolder
18
+ config: default
19
+ split: train
20
+ args: default
21
+ metrics:
22
+ - name: Accuracy
23
+ type: accuracy
24
+ value: 0.7533380182712579
25
+ ---
26
+
27
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
28
+ should probably proofread and complete it, then remove this comment. -->
29
+
30
+ # isl-model
31
+
32
+ This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset.
33
+ It achieves the following results on the evaluation set:
34
+ - Loss: 0.9812
35
+ - Accuracy: 0.7533
36
+
37
+ ## Model description
38
+
39
+ More information needed
40
+
41
+ ## Intended uses & limitations
42
+
43
+ More information needed
44
+
45
+ ## Training and evaluation data
46
+
47
+ More information needed
48
+
49
+ ## Training procedure
50
+
51
+ ### Training hyperparameters
52
+
53
+ The following hyperparameters were used during training:
54
+ - learning_rate: 5e-05
55
+ - train_batch_size: 16
56
+ - eval_batch_size: 16
57
+ - seed: 42
58
+ - gradient_accumulation_steps: 4
59
+ - total_train_batch_size: 64
60
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
61
+ - lr_scheduler_type: linear
62
+ - lr_scheduler_warmup_ratio: 0.1
63
+ - num_epochs: 10
64
+
65
+ ### Training results
66
+
67
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
68
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
69
+ | 2.6205 | 1.0 | 89 | 2.4275 | 0.5938 |
70
+ | 1.6582 | 2.0 | 178 | 1.6078 | 0.7063 |
71
+ | 1.3648 | 3.0 | 267 | 1.3754 | 0.7168 |
72
+ | 1.1069 | 4.0 | 356 | 1.2056 | 0.7323 |
73
+ | 1.1562 | 5.0 | 445 | 1.0958 | 0.7491 |
74
+ | 1.1048 | 6.0 | 534 | 1.0221 | 0.7583 |
75
+ | 0.9705 | 7.0 | 623 | 0.9831 | 0.7625 |
76
+ | 0.9059 | 8.0 | 712 | 1.0279 | 0.7386 |
77
+ | 0.9426 | 9.0 | 801 | 0.9511 | 0.7632 |
78
+ | 0.8951 | 10.0 | 890 | 0.9812 | 0.7533 |
79
+
80
+
81
+ ### Framework versions
82
+
83
+ - Transformers 4.28.1
84
+ - Pytorch 2.0.0+cu118
85
+ - Datasets 2.11.0
86
+ - Tokenizers 0.13.3