saifhmb commited on
Commit
8d2956f
·
verified ·
1 Parent(s): f7f4d3e

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +13 -20
README.md CHANGED
@@ -52,16 +52,19 @@ widget:
52
 
53
  # Model description
54
 
55
- [More Information Needed]
 
56
 
57
- ## Intended uses & limitations
58
 
59
- [More Information Needed]
60
 
61
  ## Training Procedure
62
 
63
- [More Information Needed]
64
-
 
 
 
 
65
  ### Hyperparameters
66
 
67
  <details>
@@ -125,6 +128,9 @@ widget:
125
  <style>#sk-container-id-13 {color: black;background-color: white;}#sk-container-id-13 pre{padding: 0;}#sk-container-id-13 div.sk-toggleable {background-color: white;}#sk-container-id-13 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-container-id-13 label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-container-id-13 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-container-id-13 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-container-id-13 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-container-id-13 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-container-id-13 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-container-id-13 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-container-id-13 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-13 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-13 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-container-id-13 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-container-id-13 div.sk-estimator:hover {background-color: #d4ebff;}#sk-container-id-13 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-container-id-13 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-13 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: 0;}#sk-container-id-13 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;position: relative;}#sk-container-id-13 div.sk-item {position: relative;z-index: 1;}#sk-container-id-13 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;position: relative;}#sk-container-id-13 div.sk-item::before, #sk-container-id-13 div.sk-parallel-item::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: -1;}#sk-container-id-13 div.sk-parallel-item {display: flex;flex-direction: column;z-index: 1;position: relative;background-color: white;}#sk-container-id-13 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-container-id-13 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-container-id-13 div.sk-parallel-item:only-child::after {width: 0;}#sk-container-id-13 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;}#sk-container-id-13 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;}#sk-container-id-13 div.sk-label-container {text-align: center;}#sk-container-id-13 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-container-id-13 div.sk-text-repr-fallback {display: none;}</style><div id="sk-container-id-13" class="sk-top-container" style="overflow: auto;"><div class="sk-text-repr-fallback"><pre>Pipeline(steps=[(&#x27;preprocessor&#x27;,ColumnTransformer(remainder=&#x27;passthrough&#x27;,transformers=[(&#x27;cat&#x27;,Pipeline(steps=[(&#x27;onehot&#x27;,OneHotEncoder(handle_unknown=&#x27;ignore&#x27;))]),[&#x27;GENDER&#x27;, &#x27;MARITAL&#x27;,&#x27;HOWPAID&#x27;, &#x27;MORTGAGE&#x27;]),(&#x27;num&#x27;,Pipeline(steps=[(&#x27;scale&#x27;,StandardScaler())]),Index([&#x27;AGE&#x27;, &#x27;INCOME&#x27;, &#x27;NUMKIDS&#x27;, &#x27;NUMCARDS&#x27;, &#x27;STORECAR&#x27;, &#x27;LOANS&#x27;], dtype=&#x27;object&#x27;))])),(&#x27;classifier&#x27;, LogisticRegression())])</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class="sk-container" hidden><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-97" type="checkbox" ><label for="sk-estimator-id-97" class="sk-toggleable__label sk-toggleable__label-arrow">Pipeline</label><div class="sk-toggleable__content"><pre>Pipeline(steps=[(&#x27;preprocessor&#x27;,ColumnTransformer(remainder=&#x27;passthrough&#x27;,transformers=[(&#x27;cat&#x27;,Pipeline(steps=[(&#x27;onehot&#x27;,OneHotEncoder(handle_unknown=&#x27;ignore&#x27;))]),[&#x27;GENDER&#x27;, &#x27;MARITAL&#x27;,&#x27;HOWPAID&#x27;, &#x27;MORTGAGE&#x27;]),(&#x27;num&#x27;,Pipeline(steps=[(&#x27;scale&#x27;,StandardScaler())]),Index([&#x27;AGE&#x27;, &#x27;INCOME&#x27;, &#x27;NUMKIDS&#x27;, &#x27;NUMCARDS&#x27;, &#x27;STORECAR&#x27;, &#x27;LOANS&#x27;], dtype=&#x27;object&#x27;))])),(&#x27;classifier&#x27;, LogisticRegression())])</pre></div></div></div><div class="sk-serial"><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-98" type="checkbox" ><label for="sk-estimator-id-98" class="sk-toggleable__label sk-toggleable__label-arrow">preprocessor: ColumnTransformer</label><div class="sk-toggleable__content"><pre>ColumnTransformer(remainder=&#x27;passthrough&#x27;,transformers=[(&#x27;cat&#x27;,Pipeline(steps=[(&#x27;onehot&#x27;,OneHotEncoder(handle_unknown=&#x27;ignore&#x27;))]),[&#x27;GENDER&#x27;, &#x27;MARITAL&#x27;, &#x27;HOWPAID&#x27;, &#x27;MORTGAGE&#x27;]),(&#x27;num&#x27;,Pipeline(steps=[(&#x27;scale&#x27;, StandardScaler())]),Index([&#x27;AGE&#x27;, &#x27;INCOME&#x27;, &#x27;NUMKIDS&#x27;, &#x27;NUMCARDS&#x27;, &#x27;STORECAR&#x27;, &#x27;LOANS&#x27;], dtype=&#x27;object&#x27;))])</pre></div></div></div><div class="sk-parallel"><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-99" type="checkbox" ><label for="sk-estimator-id-99" class="sk-toggleable__label sk-toggleable__label-arrow">cat</label><div class="sk-toggleable__content"><pre>[&#x27;GENDER&#x27;, &#x27;MARITAL&#x27;, &#x27;HOWPAID&#x27;, &#x27;MORTGAGE&#x27;]</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-100" type="checkbox" ><label for="sk-estimator-id-100" class="sk-toggleable__label sk-toggleable__label-arrow">OneHotEncoder</label><div class="sk-toggleable__content"><pre>OneHotEncoder(handle_unknown=&#x27;ignore&#x27;)</pre></div></div></div></div></div></div></div></div><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-101" type="checkbox" ><label for="sk-estimator-id-101" class="sk-toggleable__label sk-toggleable__label-arrow">num</label><div class="sk-toggleable__content"><pre>Index([&#x27;AGE&#x27;, &#x27;INCOME&#x27;, &#x27;NUMKIDS&#x27;, &#x27;NUMCARDS&#x27;, &#x27;STORECAR&#x27;, &#x27;LOANS&#x27;], dtype=&#x27;object&#x27;)</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-102" type="checkbox" ><label for="sk-estimator-id-102" class="sk-toggleable__label sk-toggleable__label-arrow">StandardScaler</label><div class="sk-toggleable__content"><pre>StandardScaler()</pre></div></div></div></div></div></div></div></div><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-103" type="checkbox" ><label for="sk-estimator-id-103" class="sk-toggleable__label sk-toggleable__label-arrow">remainder</label><div class="sk-toggleable__content"><pre>[]</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-104" type="checkbox" ><label for="sk-estimator-id-104" class="sk-toggleable__label sk-toggleable__label-arrow">passthrough</label><div class="sk-toggleable__content"><pre>passthrough</pre></div></div></div></div></div></div></div></div><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-105" type="checkbox" ><label for="sk-estimator-id-105" class="sk-toggleable__label sk-toggleable__label-arrow">LogisticRegression</label><div class="sk-toggleable__content"><pre>LogisticRegression()</pre></div></div></div></div></div></div></div>
126
 
127
  ## Evaluation Results
 
 
 
128
 
129
  | Metric | Value |
130
  |-----------|----------|
@@ -136,26 +142,13 @@ widget:
136
 
137
  ![Confusion Matrix](confusion_matrix.png)
138
 
139
- # How to Get Started with the Model
140
 
141
- [More Information Needed]
142
 
143
  # Model Card Authors
144
 
145
- This model card is written by following authors:
146
-
147
- [More Information Needed]
148
 
149
  # Model Card Contact
150
 
151
- You can contact the model card authors through following channels:
152
- [More Information Needed]
153
-
154
- # Citation
155
-
156
- Below you can find information related to citation.
157
 
158
- **BibTeX:**
159
- ```
160
- [More Information Needed]
161
- ```
 
52
 
53
  # Model description
54
 
55
+ This is a logistic regression model trained on customers' credit card risk data in a bank using sklearn library.
56
+ The model predicts whether a customer is worth issuing a credit card or not. The full dataset can be viewed at the following link: https://huggingface.co/datasets/saifhmb/CreditCardRisk
57
 
 
58
 
 
59
 
60
  ## Training Procedure
61
 
62
+ The data preprocessing steps applied include the following:
63
+ - Dropping high cardinality features, specifically ID
64
+ - Transforming and Encoding categorical features namely: GENDER, MARITAL, HOWPAID, MORTGAGE and the target variable, RISK
65
+ - Splitting the dataset into training/test set using 85/15 split ratio
66
+ - Applying feature scaling on all features
67
+
68
  ### Hyperparameters
69
 
70
  <details>
 
128
  <style>#sk-container-id-13 {color: black;background-color: white;}#sk-container-id-13 pre{padding: 0;}#sk-container-id-13 div.sk-toggleable {background-color: white;}#sk-container-id-13 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-container-id-13 label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-container-id-13 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-container-id-13 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-container-id-13 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-container-id-13 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-container-id-13 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-container-id-13 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-container-id-13 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-13 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-13 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-container-id-13 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-container-id-13 div.sk-estimator:hover {background-color: #d4ebff;}#sk-container-id-13 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-container-id-13 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-13 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: 0;}#sk-container-id-13 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;position: relative;}#sk-container-id-13 div.sk-item {position: relative;z-index: 1;}#sk-container-id-13 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;position: relative;}#sk-container-id-13 div.sk-item::before, #sk-container-id-13 div.sk-parallel-item::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: -1;}#sk-container-id-13 div.sk-parallel-item {display: flex;flex-direction: column;z-index: 1;position: relative;background-color: white;}#sk-container-id-13 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-container-id-13 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-container-id-13 div.sk-parallel-item:only-child::after {width: 0;}#sk-container-id-13 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;}#sk-container-id-13 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;}#sk-container-id-13 div.sk-label-container {text-align: center;}#sk-container-id-13 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-container-id-13 div.sk-text-repr-fallback {display: none;}</style><div id="sk-container-id-13" class="sk-top-container" style="overflow: auto;"><div class="sk-text-repr-fallback"><pre>Pipeline(steps=[(&#x27;preprocessor&#x27;,ColumnTransformer(remainder=&#x27;passthrough&#x27;,transformers=[(&#x27;cat&#x27;,Pipeline(steps=[(&#x27;onehot&#x27;,OneHotEncoder(handle_unknown=&#x27;ignore&#x27;))]),[&#x27;GENDER&#x27;, &#x27;MARITAL&#x27;,&#x27;HOWPAID&#x27;, &#x27;MORTGAGE&#x27;]),(&#x27;num&#x27;,Pipeline(steps=[(&#x27;scale&#x27;,StandardScaler())]),Index([&#x27;AGE&#x27;, &#x27;INCOME&#x27;, &#x27;NUMKIDS&#x27;, &#x27;NUMCARDS&#x27;, &#x27;STORECAR&#x27;, &#x27;LOANS&#x27;], dtype=&#x27;object&#x27;))])),(&#x27;classifier&#x27;, LogisticRegression())])</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class="sk-container" hidden><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-97" type="checkbox" ><label for="sk-estimator-id-97" class="sk-toggleable__label sk-toggleable__label-arrow">Pipeline</label><div class="sk-toggleable__content"><pre>Pipeline(steps=[(&#x27;preprocessor&#x27;,ColumnTransformer(remainder=&#x27;passthrough&#x27;,transformers=[(&#x27;cat&#x27;,Pipeline(steps=[(&#x27;onehot&#x27;,OneHotEncoder(handle_unknown=&#x27;ignore&#x27;))]),[&#x27;GENDER&#x27;, &#x27;MARITAL&#x27;,&#x27;HOWPAID&#x27;, &#x27;MORTGAGE&#x27;]),(&#x27;num&#x27;,Pipeline(steps=[(&#x27;scale&#x27;,StandardScaler())]),Index([&#x27;AGE&#x27;, &#x27;INCOME&#x27;, &#x27;NUMKIDS&#x27;, &#x27;NUMCARDS&#x27;, &#x27;STORECAR&#x27;, &#x27;LOANS&#x27;], dtype=&#x27;object&#x27;))])),(&#x27;classifier&#x27;, LogisticRegression())])</pre></div></div></div><div class="sk-serial"><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-98" type="checkbox" ><label for="sk-estimator-id-98" class="sk-toggleable__label sk-toggleable__label-arrow">preprocessor: ColumnTransformer</label><div class="sk-toggleable__content"><pre>ColumnTransformer(remainder=&#x27;passthrough&#x27;,transformers=[(&#x27;cat&#x27;,Pipeline(steps=[(&#x27;onehot&#x27;,OneHotEncoder(handle_unknown=&#x27;ignore&#x27;))]),[&#x27;GENDER&#x27;, &#x27;MARITAL&#x27;, &#x27;HOWPAID&#x27;, &#x27;MORTGAGE&#x27;]),(&#x27;num&#x27;,Pipeline(steps=[(&#x27;scale&#x27;, StandardScaler())]),Index([&#x27;AGE&#x27;, &#x27;INCOME&#x27;, &#x27;NUMKIDS&#x27;, &#x27;NUMCARDS&#x27;, &#x27;STORECAR&#x27;, &#x27;LOANS&#x27;], dtype=&#x27;object&#x27;))])</pre></div></div></div><div class="sk-parallel"><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-99" type="checkbox" ><label for="sk-estimator-id-99" class="sk-toggleable__label sk-toggleable__label-arrow">cat</label><div class="sk-toggleable__content"><pre>[&#x27;GENDER&#x27;, &#x27;MARITAL&#x27;, &#x27;HOWPAID&#x27;, &#x27;MORTGAGE&#x27;]</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-100" type="checkbox" ><label for="sk-estimator-id-100" class="sk-toggleable__label sk-toggleable__label-arrow">OneHotEncoder</label><div class="sk-toggleable__content"><pre>OneHotEncoder(handle_unknown=&#x27;ignore&#x27;)</pre></div></div></div></div></div></div></div></div><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-101" type="checkbox" ><label for="sk-estimator-id-101" class="sk-toggleable__label sk-toggleable__label-arrow">num</label><div class="sk-toggleable__content"><pre>Index([&#x27;AGE&#x27;, &#x27;INCOME&#x27;, &#x27;NUMKIDS&#x27;, &#x27;NUMCARDS&#x27;, &#x27;STORECAR&#x27;, &#x27;LOANS&#x27;], dtype=&#x27;object&#x27;)</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-102" type="checkbox" ><label for="sk-estimator-id-102" class="sk-toggleable__label sk-toggleable__label-arrow">StandardScaler</label><div class="sk-toggleable__content"><pre>StandardScaler()</pre></div></div></div></div></div></div></div></div><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-103" type="checkbox" ><label for="sk-estimator-id-103" class="sk-toggleable__label sk-toggleable__label-arrow">remainder</label><div class="sk-toggleable__content"><pre>[]</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-104" type="checkbox" ><label for="sk-estimator-id-104" class="sk-toggleable__label sk-toggleable__label-arrow">passthrough</label><div class="sk-toggleable__content"><pre>passthrough</pre></div></div></div></div></div></div></div></div><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-105" type="checkbox" ><label for="sk-estimator-id-105" class="sk-toggleable__label sk-toggleable__label-arrow">LogisticRegression</label><div class="sk-toggleable__content"><pre>LogisticRegression()</pre></div></div></div></div></div></div></div>
129
 
130
  ## Evaluation Results
131
+ - The target variable, RISK is multiclass. In sklearn, precision and recall functions have a parameter called,
132
+ average. This parameter is required for a multiclass/multilabel target. average = 'micro' was used to calculate
133
+ the precision and recall metrics globally by counting the total true positives, false negatives and false positives
134
 
135
  | Metric | Value |
136
  |-----------|----------|
 
142
 
143
  ![Confusion Matrix](confusion_matrix.png)
144
 
 
145
 
 
146
 
147
  # Model Card Authors
148
 
149
+ This model card is written by following authors: Seifullah Bello
 
 
150
 
151
  # Model Card Contact
152
 
153
+ You can contact the model card authors through following channels: [email protected]
 
 
 
 
 
154