Commit
·
d096ea8
1
Parent(s):
88b0835
update model card README.md
Browse files
README.md
CHANGED
@@ -1,31 +1,40 @@
|
|
1 |
---
|
2 |
license: mit
|
3 |
-
language: en
|
4 |
tags:
|
5 |
- generated_from_trainer
|
6 |
model-index:
|
7 |
- name: verdict-classifier-en
|
8 |
-
results:
|
9 |
-
- task:
|
10 |
-
type: text-classification
|
11 |
-
name: Verdict Classification
|
12 |
-
widget:
|
13 |
-
- "One might think that this is true, but it's taken out of context."
|
14 |
---
|
15 |
|
16 |
-
|
|
|
17 |
|
18 |
-
|
19 |
-
|
20 |
-
-
|
21 |
-
|
22 |
-
-
|
23 |
-
- F1
|
24 |
-
- F1
|
25 |
-
-
|
26 |
-
-
|
27 |
-
-
|
28 |
-
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
## Training procedure
|
31 |
|
@@ -40,21 +49,38 @@ The following hyperparameters were used during training:
|
|
40 |
- total_train_batch_size: 32
|
41 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
42 |
- lr_scheduler_type: linear
|
43 |
-
- lr_scheduler_warmup_steps:
|
44 |
- num_epochs: 1000
|
45 |
|
46 |
### Training results
|
47 |
|
48 |
-
| Training Loss | Epoch | Step | Validation Loss | F1 Macro | F1 Misinformation | F1 Factual | F1 Other |
|
49 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-----------------:|:----------:|:--------:|:----------:|:-------------------:|:------------:|:----------:|
|
50 |
-
| 1.
|
51 |
-
|
|
52 |
-
| 0.
|
53 |
-
| 0.
|
54 |
-
| 0.
|
55 |
-
| 0.
|
56 |
-
| 0.
|
57 |
-
| 0.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
|
60 |
### Framework versions
|
|
|
1 |
---
|
2 |
license: mit
|
|
|
3 |
tags:
|
4 |
- generated_from_trainer
|
5 |
model-index:
|
6 |
- name: verdict-classifier-en
|
7 |
+
results: []
|
|
|
|
|
|
|
|
|
|
|
8 |
---
|
9 |
|
10 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
11 |
+
should probably proofread and complete it, then remove this comment. -->
|
12 |
|
13 |
+
# verdict-classifier-en
|
14 |
+
|
15 |
+
This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset.
|
16 |
+
It achieves the following results on the evaluation set:
|
17 |
+
- Loss: 0.2262
|
18 |
+
- F1 Macro: 0.8813
|
19 |
+
- F1 Misinformation: 0.9807
|
20 |
+
- F1 Factual: 0.9846
|
21 |
+
- F1 Other: 0.6786
|
22 |
+
- Prec Macro: 0.8514
|
23 |
+
- Prec Misinformation: 0.9908
|
24 |
+
- Prec Factual: 0.9697
|
25 |
+
- Prec Other: 0.5938
|
26 |
+
|
27 |
+
## Model description
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Intended uses & limitations
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training and evaluation data
|
36 |
+
|
37 |
+
More information needed
|
38 |
|
39 |
## Training procedure
|
40 |
|
|
|
49 |
- total_train_batch_size: 32
|
50 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
51 |
- lr_scheduler_type: linear
|
52 |
+
- lr_scheduler_warmup_steps: 525
|
53 |
- num_epochs: 1000
|
54 |
|
55 |
### Training results
|
56 |
|
57 |
+
| Training Loss | Epoch | Step | Validation Loss | F1 Macro | F1 Misinformation | F1 Factual | F1 Other | Prec Macro | Prec Misinformation | Prec Factual | Prec Other |
|
58 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-----------------:|:----------:|:--------:|:----------:|:-------------------:|:------------:|:----------:|
|
59 |
+
| 1.0781 | 0.76 | 50 | 1.0941 | 0.0305 | 0.0 | 0.0 | 0.0914 | 0.0160 | 0.0 | 0.0 | 0.0479 |
|
60 |
+
| 1.0077 | 1.53 | 100 | 0.9698 | 0.3136 | 0.9408 | 0.0 | 0.0 | 0.2961 | 0.8882 | 0.0 | 0.0 |
|
61 |
+
| 0.9402 | 2.3 | 150 | 0.6143 | 0.3136 | 0.9408 | 0.0 | 0.0 | 0.2961 | 0.8882 | 0.0 | 0.0 |
|
62 |
+
| 0.8817 | 3.08 | 200 | 0.3901 | 0.4580 | 0.9453 | 0.0 | 0.4286 | 0.4320 | 0.9211 | 0.0 | 0.375 |
|
63 |
+
| 0.6771 | 3.84 | 250 | 0.2236 | 0.4836 | 0.9508 | 0.0 | 0.5 | 0.4373 | 0.9465 | 0.0 | 0.3654 |
|
64 |
+
| 0.4794 | 4.61 | 300 | 0.1373 | 0.8467 | 0.9738 | 0.9697 | 0.5965 | 0.8142 | 0.9862 | 0.9412 | 0.5152 |
|
65 |
+
| 0.3493 | 5.38 | 350 | 0.1394 | 0.8633 | 0.9761 | 0.9697 | 0.6441 | 0.8249 | 0.9907 | 0.9412 | 0.5429 |
|
66 |
+
| 0.318 | 6.15 | 400 | 0.1203 | 0.8418 | 0.9739 | 0.9697 | 0.5818 | 0.8138 | 0.9839 | 0.9412 | 0.5161 |
|
67 |
+
| 0.2508 | 6.91 | 450 | 0.1374 | 0.8674 | 0.9772 | 0.9697 | 0.6552 | 0.8303 | 0.9908 | 0.9412 | 0.5588 |
|
68 |
+
| 0.1674 | 7.69 | 500 | 0.1904 | 0.8418 | 0.9689 | 0.9412 | 0.6154 | 0.7899 | 0.9929 | 0.8889 | 0.4878 |
|
69 |
+
| 0.1829 | 8.46 | 550 | 0.1593 | 0.8759 | 0.9795 | 0.9697 | 0.6786 | 0.8419 | 0.9908 | 0.9412 | 0.5938 |
|
70 |
+
| 0.1399 | 9.23 | 600 | 0.1616 | 0.8842 | 0.9795 | 0.9846 | 0.6885 | 0.8442 | 0.9954 | 0.9697 | 0.5676 |
|
71 |
+
| 0.111 | 9.99 | 650 | 0.1656 | 0.8949 | 0.9817 | 0.9697 | 0.7333 | 0.8500 | 0.9977 | 0.9412 | 0.6111 |
|
72 |
+
| 0.083 | 10.76 | 700 | 0.1874 | 0.8459 | 0.9763 | 0.9846 | 0.5769 | 0.8291 | 0.9818 | 0.9697 | 0.5357 |
|
73 |
+
| 0.075 | 11.53 | 750 | 0.2262 | 0.8813 | 0.9807 | 0.9846 | 0.6786 | 0.8514 | 0.9908 | 0.9697 | 0.5938 |
|
74 |
+
| 0.073 | 12.3 | 800 | 0.2647 | 0.8647 | 0.9761 | 0.9846 | 0.6333 | 0.8294 | 0.9907 | 0.9697 | 0.5278 |
|
75 |
+
| 0.0585 | 13.08 | 850 | 0.2356 | 0.8720 | 0.9807 | 0.9688 | 0.6667 | 0.8451 | 0.9908 | 0.9688 | 0.5758 |
|
76 |
+
| 0.0549 | 13.84 | 900 | 0.2521 | 0.8720 | 0.9796 | 0.9697 | 0.6667 | 0.8432 | 0.9886 | 0.9412 | 0.6 |
|
77 |
+
| 0.0572 | 14.61 | 950 | 0.2730 | 0.8738 | 0.9783 | 0.9412 | 0.7018 | 0.8293 | 0.9931 | 0.8889 | 0.6061 |
|
78 |
+
| 0.0487 | 15.38 | 1000 | 0.2744 | 0.8807 | 0.9795 | 0.9846 | 0.6780 | 0.8447 | 0.9931 | 0.9697 | 0.5714 |
|
79 |
+
| 0.0653 | 16.15 | 1050 | 0.2522 | 0.8758 | 0.9807 | 0.9688 | 0.6780 | 0.8444 | 0.9931 | 0.9688 | 0.5714 |
|
80 |
+
| 0.0467 | 16.91 | 1100 | 0.2914 | 0.8591 | 0.9761 | 0.9697 | 0.6316 | 0.8250 | 0.9885 | 0.9412 | 0.5455 |
|
81 |
+
| 0.0293 | 17.69 | 1150 | 0.3072 | 0.8593 | 0.9749 | 0.9697 | 0.6333 | 0.8199 | 0.9907 | 0.9412 | 0.5278 |
|
82 |
+
| 0.0402 | 18.46 | 1200 | 0.2922 | 0.8712 | 0.9772 | 0.9697 | 0.6667 | 0.8299 | 0.9930 | 0.9412 | 0.5556 |
|
83 |
+
| 0.0209 | 19.23 | 1250 | 0.3046 | 0.8822 | 0.9795 | 0.9552 | 0.7119 | 0.8365 | 0.9954 | 0.9143 | 0.6 |
|
84 |
|
85 |
|
86 |
### Framework versions
|