Commit
·
200201b
1
Parent(s):
070a700
update model card README.md
Browse files
README.md
CHANGED
@@ -1,32 +1,40 @@
|
|
1 |
---
|
2 |
license: mit
|
3 |
-
language: en
|
4 |
tags:
|
5 |
- generated_from_trainer
|
6 |
model-index:
|
7 |
- name: verdict-classifier-en
|
8 |
-
results:
|
9 |
-
- task:
|
10 |
-
type: text-classification
|
11 |
-
name: Verdict Classification
|
12 |
-
widget:
|
13 |
-
- "One might think that this is true, but it's taken out of context."
|
14 |
---
|
15 |
|
16 |
-
|
|
|
17 |
|
18 |
-
|
19 |
-
It achieves the following results on the evaluation set, being 1,000 such verdicts translated into English, but here including duplicates to represent the true distribution:
|
20 |
-
- Loss: 0.2262
|
21 |
-
- F1 Macro: 0.8813
|
22 |
-
- F1 Misinformation: 0.9807
|
23 |
-
- F1 Factual: 0.9846
|
24 |
-
- F1 Other: 0.6786
|
25 |
-
- Prec Macro: 0.8514
|
26 |
-
- Prec Misinformation: 0.9908
|
27 |
-
- Prec Factual: 0.9697
|
28 |
-
- Prec Other: 0.5938
|
29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
## Training procedure
|
32 |
|
@@ -41,38 +49,38 @@ The following hyperparameters were used during training:
|
|
41 |
- total_train_batch_size: 32
|
42 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
43 |
- lr_scheduler_type: linear
|
44 |
-
- lr_scheduler_warmup_steps:
|
45 |
- num_epochs: 1000
|
46 |
|
47 |
### Training results
|
48 |
|
49 |
| Training Loss | Epoch | Step | Validation Loss | F1 Macro | F1 Misinformation | F1 Factual | F1 Other | Prec Macro | Prec Misinformation | Prec Factual | Prec Other |
|
50 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-----------------:|:----------:|:--------:|:----------:|:-------------------:|:------------:|:----------:|
|
51 |
-
| 1.
|
52 |
-
| 1.0077 | 1.
|
53 |
-
| 0.
|
54 |
-
| 0.
|
55 |
-
| 0.
|
56 |
-
| 0.
|
57 |
-
| 0.
|
58 |
-
| 0.
|
59 |
-
| 0.
|
60 |
-
| 0.
|
61 |
-
| 0.
|
62 |
-
| 0.
|
63 |
-
| 0.
|
64 |
-
| 0.
|
65 |
-
| 0.
|
66 |
-
| 0.
|
67 |
-
| 0.
|
68 |
-
| 0.
|
69 |
-
| 0.
|
70 |
-
| 0.
|
71 |
-
| 0.
|
72 |
-
| 0.
|
73 |
-
| 0.
|
74 |
-
| 0.
|
75 |
-
| 0.
|
76 |
|
77 |
|
78 |
### Framework versions
|
@@ -80,4 +88,4 @@ The following hyperparameters were used during training:
|
|
80 |
- Transformers 4.11.3
|
81 |
- Pytorch 1.9.0+cu102
|
82 |
- Datasets 1.9.0
|
83 |
-
- Tokenizers 0.10.2
|
|
|
1 |
---
|
2 |
license: mit
|
|
|
3 |
tags:
|
4 |
- generated_from_trainer
|
5 |
model-index:
|
6 |
- name: verdict-classifier-en
|
7 |
+
results: []
|
|
|
|
|
|
|
|
|
|
|
8 |
---
|
9 |
|
10 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
11 |
+
should probably proofread and complete it, then remove this comment. -->
|
12 |
|
13 |
+
# verdict-classifier-en
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
+
This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset.
|
16 |
+
It achieves the following results on the evaluation set:
|
17 |
+
- Loss: 0.1520
|
18 |
+
- F1 Macro: 0.9013
|
19 |
+
- F1 Misinformation: 0.9841
|
20 |
+
- F1 Factual: 0.9697
|
21 |
+
- F1 Other: 0.75
|
22 |
+
- Prec Macro: 0.8643
|
23 |
+
- Prec Misinformation: 0.9954
|
24 |
+
- Prec Factual: 0.9412
|
25 |
+
- Prec Other: 0.6562
|
26 |
+
|
27 |
+
## Model description
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Intended uses & limitations
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training and evaluation data
|
36 |
+
|
37 |
+
More information needed
|
38 |
|
39 |
## Training procedure
|
40 |
|
|
|
49 |
- total_train_batch_size: 32
|
50 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
51 |
- lr_scheduler_type: linear
|
52 |
+
- lr_scheduler_warmup_steps: 550
|
53 |
- num_epochs: 1000
|
54 |
|
55 |
### Training results
|
56 |
|
57 |
| Training Loss | Epoch | Step | Validation Loss | F1 Macro | F1 Misinformation | F1 Factual | F1 Other | Prec Macro | Prec Misinformation | Prec Factual | Prec Other |
|
58 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-----------------:|:----------:|:--------:|:----------:|:-------------------:|:------------:|:----------:|
|
59 |
+
| 1.072 | 0.73 | 50 | 1.0233 | 0.3136 | 0.9408 | 0.0 | 0.0 | 0.2961 | 0.8882 | 0.0 | 0.0 |
|
60 |
+
| 1.0077 | 1.47 | 100 | 0.8870 | 0.3136 | 0.9408 | 0.0 | 0.0 | 0.2961 | 0.8882 | 0.0 | 0.0 |
|
61 |
+
| 0.9439 | 2.2 | 150 | 0.6889 | 0.3136 | 0.9408 | 0.0 | 0.0 | 0.2961 | 0.8882 | 0.0 | 0.0 |
|
62 |
+
| 0.8743 | 2.93 | 200 | 0.3857 | 0.3129 | 0.9386 | 0.0 | 0.0 | 0.2959 | 0.8878 | 0.0 | 0.0 |
|
63 |
+
| 0.7564 | 3.67 | 250 | 0.2474 | 0.4630 | 0.9716 | 0.0 | 0.4176 | 0.4225 | 0.9839 | 0.0 | 0.2836 |
|
64 |
+
| 0.5366 | 4.41 | 300 | 0.1819 | 0.8054 | 0.9713 | 0.8772 | 0.5676 | 0.8043 | 0.9930 | 1.0 | 0.42 |
|
65 |
+
| 0.4043 | 5.15 | 350 | 0.1344 | 0.8425 | 0.9738 | 0.9538 | 0.6 | 0.8093 | 0.9884 | 0.9394 | 0.5 |
|
66 |
+
| 0.3792 | 5.87 | 400 | 0.1259 | 0.8645 | 0.9761 | 0.9841 | 0.6333 | 0.8388 | 0.9885 | 1.0 | 0.5278 |
|
67 |
+
| 0.2756 | 6.61 | 450 | 0.1344 | 0.8576 | 0.9774 | 0.9538 | 0.6415 | 0.8366 | 0.9841 | 0.9394 | 0.5862 |
|
68 |
+
| 0.2589 | 7.35 | 500 | 0.1188 | 0.8738 | 0.9783 | 0.9412 | 0.7018 | 0.8293 | 0.9931 | 0.8889 | 0.6061 |
|
69 |
+
| 0.2175 | 8.09 | 550 | 0.1436 | 0.8573 | 0.9798 | 0.9538 | 0.6383 | 0.8571 | 0.9798 | 0.9394 | 0.6522 |
|
70 |
+
| 0.1888 | 8.81 | 600 | 0.1566 | 0.8613 | 0.9761 | 0.9412 | 0.6667 | 0.8185 | 0.9907 | 0.8889 | 0.5758 |
|
71 |
+
| 0.15 | 9.55 | 650 | 0.1549 | 0.8542 | 0.9773 | 0.9538 | 0.6316 | 0.8245 | 0.9885 | 0.9394 | 0.5455 |
|
72 |
+
| 0.1464 | 10.29 | 700 | 0.1608 | 0.8633 | 0.9773 | 0.9697 | 0.6429 | 0.8307 | 0.9885 | 0.9412 | 0.5625 |
|
73 |
+
| 0.0954 | 11.03 | 750 | 0.1520 | 0.9013 | 0.9841 | 0.9697 | 0.75 | 0.8643 | 0.9954 | 0.9412 | 0.6562 |
|
74 |
+
| 0.1074 | 11.76 | 800 | 0.1655 | 0.8810 | 0.9819 | 0.9552 | 0.7059 | 0.8565 | 0.9886 | 0.9143 | 0.6667 |
|
75 |
+
| 0.1078 | 12.49 | 850 | 0.1937 | 0.8989 | 0.9829 | 0.9552 | 0.7586 | 0.8530 | 0.9977 | 0.9143 | 0.6471 |
|
76 |
+
| 0.098 | 13.23 | 900 | 0.2098 | 0.8767 | 0.9794 | 0.9412 | 0.7097 | 0.8226 | 1.0 | 0.8889 | 0.5789 |
|
77 |
+
| 0.0931 | 13.96 | 950 | 0.1591 | 0.8755 | 0.9819 | 0.9538 | 0.6909 | 0.8477 | 0.9908 | 0.9394 | 0.6129 |
|
78 |
+
| 0.0701 | 14.7 | 1000 | 0.2121 | 0.8926 | 0.9805 | 0.9552 | 0.7419 | 0.8398 | 1.0 | 0.9143 | 0.6053 |
|
79 |
+
| 0.0692 | 15.44 | 1050 | 0.2118 | 0.8989 | 0.9829 | 0.9552 | 0.7586 | 0.8530 | 0.9977 | 0.9143 | 0.6471 |
|
80 |
+
| 0.0848 | 16.17 | 1100 | 0.2094 | 0.8913 | 0.9818 | 0.9552 | 0.7368 | 0.8487 | 0.9954 | 0.9143 | 0.6364 |
|
81 |
+
| 0.0471 | 16.9 | 1150 | 0.2197 | 0.8919 | 0.9818 | 0.9697 | 0.7241 | 0.8514 | 0.9954 | 0.9412 | 0.6176 |
|
82 |
+
| 0.0399 | 17.64 | 1200 | 0.1997 | 0.9019 | 0.9852 | 0.9538 | 0.7667 | 0.8594 | 1.0 | 0.9394 | 0.6389 |
|
83 |
+
| 0.0307 | 18.38 | 1250 | 0.2873 | 0.8830 | 0.9795 | 0.9697 | 0.7000 | 0.8400 | 0.9954 | 0.9412 | 0.5833 |
|
84 |
|
85 |
|
86 |
### Framework versions
|
|
|
88 |
- Transformers 4.11.3
|
89 |
- Pytorch 1.9.0+cu102
|
90 |
- Datasets 1.9.0
|
91 |
+
- Tokenizers 0.10.2
|