--- license: other base_model: nvidia/mit-b0 tags: - vision - image-segmentation - generated_from_trainer model-index: - name: Segformer_finetune results: [] --- # Segformer_finetune This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the saad7489/SixKnifesorted dataset. It achieves the following results on the evaluation set: - Loss: 0.8216 - Mean Iou: 0.4681 - Mean Accuracy: 0.8710 - Overall Accuracy: 0.9550 - Accuracy Bkg: 0.9636 - Accuracy Knife: 0.7783 - Accuracy Gun: nan - Iou Bkg: 0.9533 - Iou Knife: 0.4511 - Iou Gun: 0.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 30 - eval_batch_size: 30 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Bkg | Accuracy Knife | Accuracy Gun | Iou Bkg | Iou Knife | Iou Gun | |:-------------:|:------:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------:|:--------------:|:------------:|:-------:|:---------:|:-------:| | 0.759 | 6.6667 | 20 | 0.8216 | 0.4681 | 0.8710 | 0.9550 | 0.9636 | 0.7783 | nan | 0.9533 | 0.4511 | 0.0 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1