File size: 2,342 Bytes
7a4d908 99d8a3c 089dc39 7a4d908 99d8a3c 7a4d908 26308f3 7a4d908 99d8a3c 7a4d908 767b092 7a4d908 767b092 7a4d908 99d8a3c 767b092 7a4d908 99d8a3c 7a4d908 767b092 99d8a3c 7a4d908 767b092 7a4d908 767b092 7a4d908 767b092 7a4d908 767b092 99d8a3c 7a4d908 99d8a3c 7a4d908 99d8a3c 7a4d908 089dc39 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 |
---
library_name: peft
base_model: mistralai/Mixtral-8x7B-Instruct-v0.1
datasets:
- ruslanmv/ai-medical-chatbot
license: apache-2.0
---
# Model Card for Medical-Mixtral-7B-v1.5k
[![](future.jpg)](https://ruslanmv.com/)
### Model Description
The Medical-Mixtral-7B-v1.5k is a fine-tuned Mixtral model for answering medical assistance questions. This model is a novel version of mistralai/Mixtral-8x7B-Instruct-v0.1, adapted to a subset of 1.5k records from the AI Medical Chatbot dataset, which contains 250k records. The purpose of this model is to provide a ready chatbot to answer questions related to medical assistance.
### Model Sources [optional]
## How to Get Started with the Model
Installation
```
pip install -qU transformers==4.36.2 datasets python-dotenv peft bitsandbytes accelerate
```
Use the code below to get started with the model.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline, logging, BitsAndBytesConfig
import os, torch
# Define the name of your fine-tuned model
finetuned_model = 'ruslanmv/Medical-Mixtral-7B-v1.5k'
# Load fine-tuned model
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_use_double_quant=False,
)
model_pretrained = AutoModelForCausalLM.from_pretrained(
finetuned_model,
load_in_4bit=True,
quantization_config=bnb_config,
torch_dtype=torch.bfloat16,
device_map="auto",
trust_remote_code=True
)
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(finetuned_model, trust_remote_code=True)
# Set pad_token_id to eos_token_id
model_pretrained.config.pad_token_id = tokenizer.eos_token_id
pipe = pipeline(task="text-generation", model=model_pretrained, tokenizer=tokenizer, max_length=100)
def build_prompt(question):
prompt=f"[INST]@Enlighten. {question} [/INST]"
return prompt
question = "What does abutment of the nerve root mean?"
prompt = build_prompt(question)
# Generate text based on the prompt
result = pipe(prompt)[0]
generated_text = result['generated_text']
# Remove the prompt from the generated text
generated_text = generated_text.replace(prompt, "", 1).strip()
print(generated_text)
```
### Framework versions
- PEFT 0.10.0
### Furter information
[https://ruslanmv.com/)](https://ruslanmv.com/) |