rootxhacker commited on
Commit
e2c2384
·
verified ·
1 Parent(s): b6770fa

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +117 -0
README.md ADDED
@@ -0,0 +1,117 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: llama3.2
3
+ datasets:
4
+ - tatsu-lab/alpaca
5
+ language:
6
+ - en
7
+ base_model:
8
+ - meta-llama/Llama-3.2-3B-Instruct
9
+ tags:
10
+ - diffusion
11
+ - text-generation-inference
12
+ ---
13
+ # llama3-diffusion-exp
14
+
15
+ An experimental diffusion-based language model fine-tuned from Meta's Llama 3.2 3B base model.
16
+
17
+ ## Overview
18
+
19
+ llama3-diffusion-exp explores the application of diffusion techniques to language generation, offering variable inference speeds and unique generation characteristics. This model represents an experimental approach to combining diffusion methodologies with transformer-based language modeling.
20
+
21
+ ## Model Details
22
+
23
+ - **Base Model**: Meta Llama 3.2 3B
24
+ - **Architecture**: Transformer with diffusion-based generation
25
+ - **Parameters**: ~3 billion
26
+ - **Training**: Fine-tuned using diffusion techniques
27
+ - **Status**: Experimental research model
28
+
29
+ ## Performance Characteristics
30
+
31
+ All benchmarks conducted on NVIDIA A100 GPU without optimizations.
32
+
33
+ ### Speed Performance (NVIDIA A100 with optimizations)
34
+ - **Base Speed**: 30 tokens/second
35
+ - **Maximum Speed**: Up to 150 tokens/second (5x acceleration)
36
+ - **Speed Variability**: Inference speed can be adjusted based on quality requirements
37
+ - **Comparison**: Standard autoregressive generation achieves ~13 tokens/second on the same hardware
38
+ - **Speedup**: 2.3x faster at base speed, up to 11.5x faster at maximum speed vs. normal generation
39
+
40
+ ### Generation Quality
41
+ - **Optimal Use**: Short, coherent sentences
42
+ - **Limitations**:
43
+ - Longer sequences may exhibit word repetition
44
+ - Complex sentences might become jumbled
45
+ - Quality degrades with increased generation length
46
+
47
+ ## Usage Recommendations
48
+
49
+ ### Best Practices
50
+ - Use for short-form text generation (1-2 sentences)
51
+ - Ideal for rapid prototyping and experimentation
52
+ - Consider for applications requiring high-speed inference
53
+ - Experiment with different speed settings to balance quality and performance
54
+
55
+ ### Limitations to Consider
56
+ - Not suitable for long-form content generation
57
+ - May require post-processing for longer outputs
58
+ - Experimental nature means results may be unpredictable
59
+ - Quality-speed trade-offs require careful tuning
60
+
61
+ ## Use Cases
62
+
63
+ - **Rapid Prototyping**: Quick text generation for testing and development
64
+ - **Real-time Applications**: Low-latency text generation needs
65
+ - **Research**: Studying diffusion approaches in language modeling
66
+ - **Creative Writing**: Short phrase or sentence generation
67
+ - **Chatbots**: Brief response generation
68
+
69
+ ## Technical Notes
70
+
71
+ This model implements diffusion-based generation techniques adapted for language modeling, which differs from traditional autoregressive generation. The variable speed characteristics come from the diffusion process allowing for different numbers of denoising steps.
72
+
73
+ ## Limitations and Warnings
74
+
75
+ ⚠️ **Experimental Model**: This is a research prototype and should be used accordingly.
76
+
77
+ - Output quality varies significantly with generation length
78
+ - Speed improvements come with potential quality trade-offs
79
+ - Not recommended for production applications without thorough testing
80
+ - May produce unexpected or incoherent outputs for complex prompts
81
+
82
+ ## Installation and Usage
83
+
84
+ ```python
85
+ # Example usage (implementation-dependent)
86
+ from transformers import AutoModelForCausalLM, AutoTokenizer
87
+
88
+ model = AutoModelForCausalLM.from_pretrained("llama3-diffusion-exp")
89
+ tokenizer = AutoTokenizer.from_pretrained("llama3-diffusion-exp")
90
+
91
+ # Generate with speed control
92
+ output = model.generate(
93
+ input_ids,
94
+ max_length=50, # Keep short for best results
95
+ speed_factor=2.0 # Adjust speed (hypothetical parameter)
96
+ )
97
+ ```
98
+
99
+ ## Contributing
100
+
101
+ This is an experimental model. Feedback, bug reports, and research contributions are welcome. Please document any unusual behaviors or interesting findings.
102
+
103
+ ## License
104
+
105
+ Please refer to the original Llama 3.2 license terms and any additional restrictions that may apply to this fine-tuned variant.
106
+
107
+ ## Citation
108
+
109
+ If you use this model in your research, please cite both the original Llama 3.2 paper and acknowledge this experimental work.
110
+
111
+ ## Acknowledgments
112
+
113
+ Built upon Meta's Llama 3.2 3B model. This experimental work explores novel applications of diffusion techniques to language generation.
114
+
115
+ ---
116
+
117
+ **Disclaimer**: This is an experimental model intended for research purposes. Results may vary and should be validated for any specific use case.