--- license: mit language: - en base_model: - Qwen/Qwen2.5-32B-Instruct pipeline_tag: text-generation --- # Apollo Model This is an experimental hybrid reasoning model built on Qwen2.5-32B-Instruct # GGUF mradermacher/Apollo-v3-32B-GGUF thanks mradermacher for this gguf ### Merge Method This model was merged using the [Model Stock](https://arxiv.org/abs/2403.19522) merge method using [Qwen/Qwen2.5-32B-Instruct](https://huggingface.co/Qwen/Qwen2.5-32B-Instruct) as a base. ### Enable reasoning prompt the LLM with think deeper and step by step ### Example code ``` from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "rootxhacker/Apollo-v3-32B" model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype="auto", device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained(model_name) prompt = "How many r's are in the word strawberry" messages = [ {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([text], return_tensors="pt").to(model.device) generated_ids = model.generate( **model_inputs, max_new_tokens=32768 ) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] print(response) ```