File size: 1,397 Bytes
5feeb4a
 
 
 
 
 
190f9dd
5feeb4a
6ec46e6
 
 
 
 
5feeb4a
 
 
 
 
 
a4eb20f
 
 
 
 
6ec46e6
 
 
 
 
 
e740223
 
6ec46e6
 
 
 
 
 
 
 
 
 
a4eb20f
6ec46e6
 
 
 
 
 
 
 
 
a4eb20f
6ec46e6
a4eb20f
6ec46e6
 
 
 
 
 
 
a4eb20f
6ec46e6
 
a4eb20f
e740223
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
---
license: mit
language:
- en
base_model:
- Qwen/Qwen2.5-32B-Instruct
pipeline_tag: text-generation
---

# Apollo Model

This is an experimental hybrid reasoning model built on Qwen2.5-32B-Instruct

# GGUF

mradermacher/Apollo-v3-32B-GGUF

thanks mradermacher for this gguf

### Merge Method

This model was merged using the [Model Stock](https://arxiv.org/abs/2403.19522) merge method using [Qwen/Qwen2.5-32B-Instruct](https://huggingface.co/Qwen/Qwen2.5-32B-Instruct) as a base.


### Enable reasoning

prompt the LLM with think deeper and step by step

### Example code 

```

from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "rootxhacker/Apollo-v3-32B"

model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r's are in the word strawberry"
messages = [
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)

model_inputs = tokenizer([text], return_tensors="pt").to(model.device)

generated_ids = model.generate(
**model_inputs,
max_new_tokens=32768
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]

response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(response)

```