File size: 1,397 Bytes
5feeb4a 190f9dd 5feeb4a 6ec46e6 5feeb4a a4eb20f 6ec46e6 e740223 6ec46e6 a4eb20f 6ec46e6 a4eb20f 6ec46e6 a4eb20f 6ec46e6 a4eb20f 6ec46e6 a4eb20f e740223 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 |
---
license: mit
language:
- en
base_model:
- Qwen/Qwen2.5-32B-Instruct
pipeline_tag: text-generation
---
# Apollo Model
This is an experimental hybrid reasoning model built on Qwen2.5-32B-Instruct
# GGUF
mradermacher/Apollo-v3-32B-GGUF
thanks mradermacher for this gguf
### Merge Method
This model was merged using the [Model Stock](https://arxiv.org/abs/2403.19522) merge method using [Qwen/Qwen2.5-32B-Instruct](https://huggingface.co/Qwen/Qwen2.5-32B-Instruct) as a base.
### Enable reasoning
prompt the LLM with think deeper and step by step
### Example code
```
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "rootxhacker/Apollo-v3-32B"
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r's are in the word strawberry"
messages = [
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
generated_ids = model.generate(
**model_inputs,
max_new_tokens=32768
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(response)
``` |