tlucch-rootstrap commited on
Commit
09f927b
·
verified ·
1 Parent(s): 51dc8a5

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +81 -0
README.md CHANGED
@@ -1,3 +1,84 @@
1
  ---
 
 
 
 
 
2
  license: mit
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ library_name: monai
3
+ tags:
4
+ - crowd-counting
5
+ - cnn
6
+ - detection
7
  license: mit
8
+ metrics:
9
+ - mae
10
+ pipeline_tag: object-detection
11
+ datasets:
12
+ - ShanghaiTechDataset
13
  ---
14
+ ---
15
+
16
+ ### Model Description
17
+ A machine learning model for crowd counting
18
+
19
+ - **Developed by:** rootstrap
20
+ - **Model type:** image-classifier
21
+ - **License:** mit
22
+
23
+ ## Crowd Counting Model
24
+ The aim is to build a model that can estimate the amount of people in a crowd from an image-
25
+
26
+ The model was built using **CSRNet** a crowd counting neural network designed by Yuhong Li, Xiaofan Zhang and Deming Chen ([https://github.com/leeyeehoo/CSRNet-pytorch](https://github.com/leeyeehoo/CSRNet-pytorch))
27
+
28
+ ### Model Sources
29
+
30
+ - **Repository:** [https://github.com/leeyeehoo/CSRNet-pytorch](https://github.com/leeyeehoo/CSRNet-pytorch)
31
+
32
+ ## Uses
33
+
34
+ This model was created in the spirit of creating a model capable of counting the amount of people in a crowd using images.
35
+
36
+ ### Direct Use
37
+
38
+ ```bash
39
+ model = CSRNet()
40
+ checkpoint = torch.load("weights.pth")
41
+ model.load_state_dict(checkpoint)
42
+ model.predict()
43
+
44
+ ```
45
+
46
+ ## Bias, Risks, and Limitations
47
+
48
+ Although the model can be very accurate its not exact, it has a 2%-6% error in the prediction.
49
+
50
+ ## Training Details
51
+
52
+ ### Training Data
53
+
54
+ The model was trained using the ShanghaiTech Dataset, specifically the Shanghai B Dataset.
55
+
56
+ ### Training Procedure
57
+
58
+ The info on training procedure can be found in this repository [https://github.com/leeyeehoo/CSRNet-pytorch](https://github.com/leeyeehoo/CSRNet-pytorch)
59
+
60
+ ## Evaluation and Results
61
+
62
+ The model reached a MAE of 10.6
63
+
64
+ ## Citation
65
+
66
+ ### Model creation and training
67
+
68
+ @inproceedings{li2018csrnet,
69
+ title={CSRNet: Dilated convolutional neural networks for understanding the highly congested scenes},
70
+ author={Li, Yuhong and Zhang, Xiaofan and Chen, Deming},
71
+ booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
72
+ pages={1091--1100},
73
+ year={2018}
74
+ }
75
+
76
+ ### Dataset
77
+
78
+ @inproceedings{zhang2016single,
79
+ title={Single-image crowd counting via multi-column convolutional neural network},
80
+ author={Zhang, Yingying and Zhou, Desen and Chen, Siqin and Gao, Shenghua and Ma, Yi},
81
+ booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
82
+ pages={589--597},
83
+ year={2016}
84
+ }