rohitnagareddy commited on
Commit
35cee1b
·
verified ·
1 Parent(s): 2add5ab

Add model card

Browse files
Files changed (1) hide show
  1. README.md +98 -0
README.md ADDED
@@ -0,0 +1,98 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ language: en
4
+ tags:
5
+ - openbmb/MiniCPM4-0.5B
6
+ - coding
7
+ - code-generation
8
+ - fine-tuned
9
+ - qlora
10
+ - gguf
11
+ - instruction
12
+ - python
13
+ datasets:
14
+ - TokenBender/code_instructions_122k_alpaca_style
15
+ model_type: openbmb/MiniCPM4-0.5B
16
+ base_model: openbmb/MiniCPM4-0.5B
17
+ ---
18
+
19
+ # MiniCPM4-0.5B-Coding-Finetuned-v1
20
+
21
+ This model is a fine-tuned version of `openbmb/MiniCPM4-0.5B` specialized for Python code generation tasks. It's designed to understand programming-related instructions and provide accurate and efficient Python code solutions.
22
+
23
+ ## 💻 Model Description
24
+
25
+ - **Base Model**: `openbmb/MiniCPM4-0.5B`
26
+ - **Fine-tuning Method**: **QLoRA** (Quantized Low-Rank Adaptation)
27
+ - **Dataset**: `TokenBender/code_instructions_122k_alpaca_style` - A large dataset of coding instructions and their corresponding solutions.
28
+ - **Training**: Optimized for instruction-based code generation using 4-bit quantization for efficiency.
29
+
30
+ ## ⚠️ Important Considerations
31
+
32
+ - **Verify All Code**: Generated code may contain errors or be suboptimal. Always test and review the code thoroughly before using it in production environments.
33
+ - **Security**: The generated code has not been vetted for security vulnerabilities. Be cautious when using it in security-sensitive applications.
34
+ - **Not a Replacement for Developers**: This model is a tool to assist developers, not replace them. Human oversight and expertise are crucial.
35
+
36
+ ## 🚀 Usage
37
+
38
+ ### With `transformers`
39
+
40
+ ```python
41
+ from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
42
+ import torch
43
+
44
+ model_id = "rohitnagareddy/MiniCPM4-0.5B-Coding-Finetuned-v1"
45
+
46
+ # Load model and tokenizer
47
+ tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
48
+ model = AutoModelForCausalLM.from_pretrained(
49
+ model_id,
50
+ torch_dtype=torch.float16,
51
+ device_map="auto",
52
+ trust_remote_code=True
53
+ )
54
+
55
+ # Create conversation for a Python code-generation task
56
+ messages = [
57
+ {"role": "system", "content": "You are an expert coding assistant."},
58
+ {"role": "user", "content": "Write a Python function that takes a list of integers and returns the sum of all even numbers in the list."}
59
+ ]
60
+ prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
61
+
62
+ pipe = pipeline(
63
+ "text-generation",
64
+ model=model,
65
+ tokenizer=tokenizer
66
+ )
67
+
68
+ # Generate response
69
+ outputs = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
70
+ print(outputs[0]["generated_text"])
71
+ ```
72
+
73
+ ## 🔧 GGUF Versions
74
+
75
+ This repository includes quantized GGUF versions for use with `llama.cpp` and compatible tools:
76
+
77
+ - `MiniCPM4-0.5B-Coding-Finetuned-v1.fp16.gguf` - Full precision (largest, best quality)
78
+ - `MiniCPM4-0.5B-Coding-Finetuned-v1.Q8_0.gguf` - 8-bit quantization (good balance)
79
+ - `MiniCPM4-0.5B-Coding-Finetuned-v1.Q5_K_M.gguf` - 5-bit quantization (smaller, fast)
80
+ - `MiniCPM4-0.5B-Coding-Finetuned-v1.Q4_K_M.gguf` - 4-bit quantization (smallest, fastest)
81
+
82
+ ### Example with llama.cpp
83
+
84
+ ```bash
85
+ ./main -m ./MiniCPM4-0.5B-Coding-Finetuned-v1.Q4_K_M.gguf -n 256 -p "<|im_start|>system\nYou are an expert coding assistant.<|im_end|>\n<|im_start|>user\nCreate a Python function to find the factorial of a number.<|im_end|>\n<|im_start|>assistant\n"
86
+ ```
87
+
88
+ ## 📊 Training Details
89
+
90
+ - **Training Epochs**: 1
91
+ - **QLoRA Rank (r)**: 16
92
+ - **QLoRA Alpha**: 32
93
+ - **Learning Rate**: 2e-4
94
+ - **Optimizer**: Paged AdamW 32-bit
95
+ - **Target Modules**: Auto-detected linear layers
96
+
97
+ ---
98
+ *Model created by rohitnagareddy using an automated Colab script.*