Add model card
Browse files
README.md
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
language: en
|
4 |
+
tags:
|
5 |
+
- openbmb/MiniCPM4-0.5B
|
6 |
+
- coding
|
7 |
+
- code-generation
|
8 |
+
- fine-tuned
|
9 |
+
- qlora
|
10 |
+
- gguf
|
11 |
+
- instruction
|
12 |
+
- python
|
13 |
+
datasets:
|
14 |
+
- TokenBender/code_instructions_122k_alpaca_style
|
15 |
+
model_type: openbmb/MiniCPM4-0.5B
|
16 |
+
base_model: openbmb/MiniCPM4-0.5B
|
17 |
+
---
|
18 |
+
|
19 |
+
# MiniCPM4-0.5B-Coding-Finetuned-v1
|
20 |
+
|
21 |
+
This model is a fine-tuned version of `openbmb/MiniCPM4-0.5B` specialized for Python code generation tasks. It's designed to understand programming-related instructions and provide accurate and efficient Python code solutions.
|
22 |
+
|
23 |
+
## 💻 Model Description
|
24 |
+
|
25 |
+
- **Base Model**: `openbmb/MiniCPM4-0.5B`
|
26 |
+
- **Fine-tuning Method**: **QLoRA** (Quantized Low-Rank Adaptation)
|
27 |
+
- **Dataset**: `TokenBender/code_instructions_122k_alpaca_style` - A large dataset of coding instructions and their corresponding solutions.
|
28 |
+
- **Training**: Optimized for instruction-based code generation using 4-bit quantization for efficiency.
|
29 |
+
|
30 |
+
## ⚠️ Important Considerations
|
31 |
+
|
32 |
+
- **Verify All Code**: Generated code may contain errors or be suboptimal. Always test and review the code thoroughly before using it in production environments.
|
33 |
+
- **Security**: The generated code has not been vetted for security vulnerabilities. Be cautious when using it in security-sensitive applications.
|
34 |
+
- **Not a Replacement for Developers**: This model is a tool to assist developers, not replace them. Human oversight and expertise are crucial.
|
35 |
+
|
36 |
+
## 🚀 Usage
|
37 |
+
|
38 |
+
### With `transformers`
|
39 |
+
|
40 |
+
```python
|
41 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
42 |
+
import torch
|
43 |
+
|
44 |
+
model_id = "rohitnagareddy/MiniCPM4-0.5B-Coding-Finetuned-v1"
|
45 |
+
|
46 |
+
# Load model and tokenizer
|
47 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
|
48 |
+
model = AutoModelForCausalLM.from_pretrained(
|
49 |
+
model_id,
|
50 |
+
torch_dtype=torch.float16,
|
51 |
+
device_map="auto",
|
52 |
+
trust_remote_code=True
|
53 |
+
)
|
54 |
+
|
55 |
+
# Create conversation for a Python code-generation task
|
56 |
+
messages = [
|
57 |
+
{"role": "system", "content": "You are an expert coding assistant."},
|
58 |
+
{"role": "user", "content": "Write a Python function that takes a list of integers and returns the sum of all even numbers in the list."}
|
59 |
+
]
|
60 |
+
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
61 |
+
|
62 |
+
pipe = pipeline(
|
63 |
+
"text-generation",
|
64 |
+
model=model,
|
65 |
+
tokenizer=tokenizer
|
66 |
+
)
|
67 |
+
|
68 |
+
# Generate response
|
69 |
+
outputs = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
|
70 |
+
print(outputs[0]["generated_text"])
|
71 |
+
```
|
72 |
+
|
73 |
+
## 🔧 GGUF Versions
|
74 |
+
|
75 |
+
This repository includes quantized GGUF versions for use with `llama.cpp` and compatible tools:
|
76 |
+
|
77 |
+
- `MiniCPM4-0.5B-Coding-Finetuned-v1.fp16.gguf` - Full precision (largest, best quality)
|
78 |
+
- `MiniCPM4-0.5B-Coding-Finetuned-v1.Q8_0.gguf` - 8-bit quantization (good balance)
|
79 |
+
- `MiniCPM4-0.5B-Coding-Finetuned-v1.Q5_K_M.gguf` - 5-bit quantization (smaller, fast)
|
80 |
+
- `MiniCPM4-0.5B-Coding-Finetuned-v1.Q4_K_M.gguf` - 4-bit quantization (smallest, fastest)
|
81 |
+
|
82 |
+
### Example with llama.cpp
|
83 |
+
|
84 |
+
```bash
|
85 |
+
./main -m ./MiniCPM4-0.5B-Coding-Finetuned-v1.Q4_K_M.gguf -n 256 -p "<|im_start|>system\nYou are an expert coding assistant.<|im_end|>\n<|im_start|>user\nCreate a Python function to find the factorial of a number.<|im_end|>\n<|im_start|>assistant\n"
|
86 |
+
```
|
87 |
+
|
88 |
+
## 📊 Training Details
|
89 |
+
|
90 |
+
- **Training Epochs**: 1
|
91 |
+
- **QLoRA Rank (r)**: 16
|
92 |
+
- **QLoRA Alpha**: 32
|
93 |
+
- **Learning Rate**: 2e-4
|
94 |
+
- **Optimizer**: Paged AdamW 32-bit
|
95 |
+
- **Target Modules**: Auto-detected linear layers
|
96 |
+
|
97 |
+
---
|
98 |
+
*Model created by rohitnagareddy using an automated Colab script.*
|