ritvik77 commited on
Commit
582ef09
ยท
verified ยท
1 Parent(s): 032f308

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +32 -7
README.md CHANGED
@@ -19,11 +19,37 @@ tags:
19
  ---
20
  # Model Card for Model ID
21
 
22
- <!-- Provide a quick summary of what the model is/does. -->
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23
 
24
  This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1).
25
 
26
  ## Model Details
 
 
 
 
 
 
 
27
 
28
  ### Model Description
29
 
@@ -31,13 +57,13 @@ This modelcard aims to be a base template for new models. It has been generated
31
 
32
 
33
 
34
- - **Developed by:** [More Information Needed]
35
  - **Funded by [optional]:** [More Information Needed]
36
  - **Shared by [optional]:** [More Information Needed]
37
- - **Model type:** [More Information Needed]
38
  - **Language(s) (NLP):** [More Information Needed]
39
  - **License:** [More Information Needed]
40
- - **Finetuned from model [optional]:** [More Information Needed]
41
 
42
  ### Model Sources [optional]
43
 
@@ -48,13 +74,12 @@ This modelcard aims to be a base template for new models. It has been generated
48
  - **Demo [optional]:** [More Information Needed]
49
 
50
  ## Uses
51
-
 
52
  from transformers import AutoModelForCausalLM, AutoTokenizer
53
-
54
  # โœ… Load the uploaded model
55
  model = AutoModelForCausalLM.from_pretrained("ritvik77/Medical_Doctor_AI_LoRA-Mistral-7B-Instruct")
56
  tokenizer = AutoTokenizer.from_pretrained("ritvik77/Medical_Doctor_AI_LoRA-Mistral-7B-Instruct")
57
-
58
  # โœ… Sample inference
59
  prompt = "Patient reports chest pain and dizziness. Whatโ€™s the likely diagnosis?"
60
  inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
 
19
  ---
20
  # Model Card for Model ID
21
 
22
+ <!-- ๐Ÿฉบ Medical Diagnosis AI Model - Powered by Mistral-7B & LoRA ๐Ÿš€
23
+ ๐Ÿ”น Model Overview:
24
+
25
+ Base Model: Mistral-7B (7.7 billion parameters)
26
+ Fine-Tuning Method: LoRA (Low-Rank Adaptation)
27
+ Quantization: bnb_4bit (reduces memory footprint while retaining performance)
28
+ ๐Ÿ”น Parameter Details:
29
+
30
+ Original Mistral-7B Parameters: 7.7 billion
31
+ LoRA Fine-Tuned Parameters: ~4.48% of total model parameters (~340 million)
32
+ Final Merged Model Size (bnb_4bit Quantized): ~4.5GB
33
+ ๐Ÿ”น Key Features:
34
+ โœ… Accurate Diagnoses for symptoms like chest pain, dizziness, and breathlessness
35
+ โœ… Step-by-Step Medical Reasoning using Chain-of-Thought (CoT) prompting
36
+ โœ… Efficient Inference with reduced VRAM usage (ideal for GPUs with limited memory)
37
+
38
+ ๐Ÿ”น Use Case:
39
+ Designed to assist healthcare professionals by offering clear, evidence-backed insights for improved clinical decision-making.
40
+
41
+ ๐Ÿ“ Note: While this model offers valuable insights, it's intended to support โ€” not replace โ€” professional medical judgment. -->
42
 
43
  This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1).
44
 
45
  ## Model Details
46
+ Original Mistral-7B Parameters: 7.7 billion
47
+ LoRA Fine-Tuned Parameters: ~4.48% of total model parameters (~340 million)
48
+ Final Merged Model Size (bnb_4bit Quantized): ~4.5GB
49
+ ๐Ÿ”น Key Features:
50
+ โœ… Accurate Diagnoses for symptoms like chest pain, dizziness, and breathlessness
51
+ โœ… Step-by-Step Medical Reasoning using Chain-of-Thought (CoT) prompting
52
+ โœ… Efficient Inference with reduced VRAM usage (ideal for GPUs with limited memory)
53
 
54
  ### Model Description
55
 
 
57
 
58
 
59
 
60
+ - **Developed by:** [Ritvik Gaur]
61
  - **Funded by [optional]:** [More Information Needed]
62
  - **Shared by [optional]:** [More Information Needed]
63
+ - **Model type:** [Medical LLM]
64
  - **Language(s) (NLP):** [More Information Needed]
65
  - **License:** [More Information Needed]
66
+ - **Finetuned from model [optional]:** [Mistral-7B-Instruct-v3]
67
 
68
  ### Model Sources [optional]
69
 
 
74
  - **Demo [optional]:** [More Information Needed]
75
 
76
  ## Uses
77
+ Python code for usage:
78
+
79
  from transformers import AutoModelForCausalLM, AutoTokenizer
 
80
  # โœ… Load the uploaded model
81
  model = AutoModelForCausalLM.from_pretrained("ritvik77/Medical_Doctor_AI_LoRA-Mistral-7B-Instruct")
82
  tokenizer = AutoTokenizer.from_pretrained("ritvik77/Medical_Doctor_AI_LoRA-Mistral-7B-Instruct")
 
83
  # โœ… Sample inference
84
  prompt = "Patient reports chest pain and dizziness. Whatโ€™s the likely diagnosis?"
85
  inputs = tokenizer(prompt, return_tensors="pt").to(model.device)