rishipatel92 commited on
Commit
e14709e
·
1 Parent(s): 0949187

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 524.07 +/- 63.31
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b70905bb334f5f0615024158dfc420843a898c84e2072e11d72a940734311104
3
+ size 129260
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f879b987af0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f879b987b80>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f879b987c10>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f879b987ca0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f879b987d30>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f879b987dc0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f879b987e50>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f879b987ee0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f879b987f70>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f879b98b040>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f879b98b0d0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f879b98b160>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f879b9807e0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 2000000,
63
+ "_total_timesteps": 2000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1674036412641113695,
68
+ "learning_rate": 0.00096,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAADd9rj6r7Xw+g5ghP7GeNL/8FOG+iHQ7vm25qj8rUTM+mYpxv7Y1rz/rqpw+FBlDvwj81D+Y8gy/8OgnvzHqYj+SnRi/QGa/vkJo/j7bHoG+ObcTQPxVf79Z8oO9JVacvs4Ynr9JuA0/m/jQPgTLKz//3zy/okaFP+EEvb1i3cu+ZnKlvzVAOj+/QUA+LiJ7PtBGPj+br6i+3g/MvbDHkL6nJdU+R8gEwBXBAz5wkRQ/qosxP1NUTL/W6eo+K/03v/poIkCmJ687h7s5vwf2YLzrQ08/SbgNP5v40D68vb6/k+/tPFRXsD/+3ADAeBegv3kT5j7SOYc/sYYCQFAaCD/unxDAaqwkO9H+pL7SsAC/IUOUP28+T0AAPNS/FmGvO/o0Er8BQ8s/QFA+P07+fr6pzw1ANw+ZP5zwLL87kyq/zhiev0m4DT+b+NA+BMsrP71TJT+FPLY/SNi/v3PbjD/biLE+d0QUwLC3hb9ml8M7/wPAPnCOIz8zsvO+uWPAvvjbgL8H/KY/6iTMPnu2o7/DLFW/pRAUQDE6c78wVExAGGQEQOgP5b8lYd49AJLTP84Ynr9JuA0/m/jQPry9vr+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADHiKK1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAsSscPAAAAADvru+/AAAAAKPENj0AAAAAzTXoPwAAAABdrTo8AAAAALAm7T8AAAAAd+7EPQAAAAAo0+q/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAF6ngNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgM+6Ab4AAAAALEb4vwAAAACu/bI9AAAAADVU5z8AAAAAZ3FDvAAAAABcB94/AAAAAPuzp70AAAAA7+n+vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACeS5bUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAMi6c8AAAAANAL5r8AAAAA/tOVPQAAAAAsSOc/AAAAAAMxhL0AAAAAlPLvPwAAAAAH6Xk9AAAAAEbJ5L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACfXBO2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA5/wBPgAAAAA40Ny/AAAAAKjlTD0AAAAAyovdPwAAAADYsQM+AAAAAH5QAEAAAAAAtMsOPgAAAAA2gADAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQI/2kF2V3UyMAWyUTegDjAF0lEdAqNcSYkVvdnV9lChoBkdAi1uSLAHmimgHTegDaAhHQKjY4q2jO9p1fZQoaAZHQJHElHvttyhoB03oA2gIR0Co2P0vwmVrdX2UKGgGR0CBvbD50r9VaAdN6ANoCEdAqOALNW2gF3V9lChoBkdAhd0xyXD3umgHTegDaAhHQKjjXD9fkWB1fZQoaAZHQJJol4t6HCZoB03oA2gIR0Co5SxG+bmVdX2UKGgGR0CTq0hHbypaaAdN6ANoCEdAqOVJIWgvlHV9lChoBkdAgLYY+r2g4GgHTegDaAhHQKjspFkxyn11fZQoaAZHQIUgcqOLiuNoB03oA2gIR0Co7/IkZ75VdX2UKGgGR0CN6BHBk7OnaAdN6ANoCEdAqPG2jXWe6XV9lChoBkdAj+WNpVS4v2gHTegDaAhHQKjx0IiTt9h1fZQoaAZHQI5frHfdhy9oB03oA2gIR0Co+PkDIRywdX2UKGgGR0COTUBun/DMaAdN6ANoCEdAqPw0QkHD8HV9lChoBkdAlFY7NfPX1GgHTegDaAhHQKj990lJHy51fZQoaAZHQI7mp+BpYcNoB03oA2gIR0Co/hAbIcR2dX2UKGgGR0CSbZm/nGKiaAdN6ANoCEdAqQUn5N47inV9lChoBkdAknM1/YraumgHTegDaAhHQKkIaVmBe5Z1fZQoaAZHQIrg+apgkTpoB03oA2gIR0CpCjS88La3dX2UKGgGR0CGAXNXYDkmaAdN6ANoCEdAqQpPBYV6/3V9lChoBkdAkIUusYEW7GgHTegDaAhHQKkRcNnXd0t1fZQoaAZHQJCMZuejEehoB03oA2gIR0CpFLT+3pfQdX2UKGgGR0CLopVVghKUaAdN6ANoCEdAqRZzhaTwD3V9lChoBkdAiKM6P0Zm7WgHTegDaAhHQKkWjBTGYKJ1fZQoaAZHQHo+EN4JNTNoB03oA2gIR0CpHdT1K5CodX2UKGgGR0B8xSnxaxHHaAdN6ANoCEdAqSE4m7aqTHV9lChoBkdAgJDKlP8AJmgHTegDaAhHQKkjOZBsyi51fZQoaAZHQHod+rQw9JVoB03oA2gIR0CpI1nJLdvbdX2UKGgGR0Bz7s/KQq7RaAdN6ANoCEdAqSq6pT/ACXV9lChoBkdAblJt7a7EpGgHTegDaAhHQKkuCiVSn+B1fZQoaAZHQHWj/ShJyyVoB03oA2gIR0CpL+C1iONpdX2UKGgGR0CE1pRQaaTfaAdN6ANoCEdAqS/6KYRdyHV9lChoBkdAgAlUfYBeX2gHTegDaAhHQKk3fpKSPlx1fZQoaAZHQIZpzrAxi5NoB03oA2gIR0CpOuh7mdRSdX2UKGgGR0CAWVEpiI+GaAdN6ANoCEdAqTzFHSWqtHV9lChoBkdAkXpfb0voNmgHTegDaAhHQKk830Syt3h1fZQoaAZHQHf6mhufmLdoB03oA2gIR0CpRCmmtQsPdX2UKGgGR0CIm2n5SFXaaAdN6ANoCEdAqUdujbi6x3V9lChoBkdAjH/zHbRF7WgHTegDaAhHQKlJRk+X7ch1fZQoaAZHQID6YZdfLLZoB03oA2gIR0CpSWBHkLhKdX2UKGgGR0CAEi8jiXIEaAdN6ANoCEdAqVCeKZUkwHV9lChoBkdAii+QBHTZx2gHTegDaAhHQKlT9T850bN1fZQoaAZHQH0DZMURFqloB03oA2gIR0CpVctGd7OWdX2UKGgGR0CIOmDzRQaaaAdN6ANoCEdAqVXqpPykK3V9lChoBkdAkiUsUM5OrWgHTegDaAhHQKldSrGR3eN1fZQoaAZHQIcWpoIv8IloB03oA2gIR0CpYNZOi35OdX2UKGgGR0B/JOUA1ejVaAdN6ANoCEdAqWK3BtUGV3V9lChoBkdAgrJnqFAVwmgHTegDaAhHQKli0T6i0v51fZQoaAZHQH2uw+IMz/JoB03oA2gIR0CpajMbFS88dX2UKGgGR0CBu5V6u4gBaAdN6ANoCEdAqW2LoOhCdHV9lChoBkdAd0uDtPYWcmgHTegDaAhHQKlvXschkiF1fZQoaAZHQIT2l3jdYXBoB03oA2gIR0Cpb3iQtBfKdX2UKGgGR0B8ecY51eSkaAdN6ANoCEdAqXbIx+KCQXV9lChoBkdAeMTiNKh+OWgHTegDaAhHQKl6JSBshxJ1fZQoaAZHQH6/VivxH5JoB03oA2gIR0Cpe/aEal1sdX2UKGgGR0CALajZ+QU6aAdN6ANoCEdAqXwPiJfplnV9lChoBkdAb/Ws3AEdNmgHTegDaAhHQKmDaoKD0191fZQoaAZHQHprFrIo3JhoB03oA2gIR0CphuPiT+vRdX2UKGgGR0B9IDFXJYDDaAdN6ANoCEdAqYjORigCfnV9lChoBkdAfkTkqc3ERGgHTegDaAhHQKmI6+IuXeF1fZQoaAZHQHz5b70nPVxoB03oA2gIR0CpkEC+cpb2dX2UKGgGR0CBtVAprk8zaAdN6ANoCEdAqZOq08eS0XV9lChoBkdAgBJXm3fAK2gHTegDaAhHQKmVftRekYZ1fZQoaAZHQIgqaOearm1oB03oA2gIR0CplZepGWledX2UKGgGR0CGAtzT4L1FaAdN6ANoCEdAqZz+1+iJwnV9lChoBkdAjXNF9a2Wp2gHTegDaAhHQKmgbVjqfOF1fZQoaAZHQID8HdVNpM9oB03oA2gIR0CpokRT0g8sdX2UKGgGR0CGuhIHTqjaaAdN6ANoCEdAqaJdOdoWYXV9lChoBkdAgZi7Q1JlKGgHTegDaAhHQKmps7OE/Sp1fZQoaAZHQINYXb/Ot4loB03oA2gIR0CprQKxC6YmdX2UKGgGR0CCH1kpZwGXaAdN6ANoCEdAqa7Qn0Cih3V9lChoBkdAi5Nc274BWGgHTegDaAhHQKmu6cwQDmt1fZQoaAZHQINfxvJiiItoB03oA2gIR0CptkJBPbfxdX2UKGgGR0CGMwGRFI/aaAdN6ANoCEdAqbmSKziS73V9lChoBkdAh5hdd/rjYWgHTegDaAhHQKm7YFIuoP11fZQoaAZHQIbItRNyo4xoB03oA2gIR0Cpu3orOJLvdX2UKGgGR0CGko5Dqnm8aAdN6ANoCEdAqcK0XHim23V9lChoBkdAfRtzUZvUBmgHTegDaAhHQKnGAqm0mdB1fZQoaAZHQIqGBScbzbxoB03oA2gIR0Cpx8+gL7XQdX2UKGgGR0CAFK7oSteVaAdN6ANoCEdAqcfpkVeruXV9lChoBkdAf5vs052hZmgHTegDaAhHQKnPSwmE5AB1fZQoaAZHQIF6NzXBgu1oB03oA2gIR0Cp1C38fmtAdX2UKGgGR0CHPPpnpSrHaAdN6ANoCEdAqdb8/8l5W3V9lChoBkdAgv8rYPGyX2gHTegDaAhHQKnXJIwudwx1fZQoaAZHQIIcJMg2ZRdoB03oA2gIR0Cp31G7BfrsdX2UKGgGR0B2ZBZvDP4VaAdN6ANoCEdAqeKkxmCiAXV9lChoBkdAh2hZtWMjvGgHTegDaAhHQKnkbYLb5/N1fZQoaAZHQIQTSEFnqV1oB03oA2gIR0Cp5Ich1TzedX2UKGgGR0CIgw6I3zczaAdN6ANoCEdAqevJyQxN7HV9lChoBkdAfqn7/GVAzGgHTegDaAhHQKnvIU+s5n11fZQoaAZHQHRZncxj8UFoB03oA2gIR0Cp8Or5IpYtdX2UKGgGR0CBfv99+gDiaAdN6ANoCEdAqfEHC/GlynV9lChoBkdAgkIcjzI3i2gHTegDaAhHQKn4kCyQgcN1fZQoaAZHQIBU3ICEHt5oB03oA2gIR0Cp++pl8PWhdX2UKGgGR0CA5PcFhXr/aAdN6ANoCEdAqf27rZ8KHHV9lChoBkdAgCtixu89OmgHTegDaAhHQKn91iqhlDp1fZQoaAZHQIZiqTt9hJBoB03oA2gIR0CqBRIfr8iwdX2UKGgGR0B4sxdgOSW7aAdN6ANoCEdAqghlX/5tWXV9lChoBkdAdxcG2CuloGgHTegDaAhHQKoKNZX+2mZ1fZQoaAZHQHz+ngLqlgtoB03oA2gIR0CqCk7pmmLtdX2UKGgGR0CA21H5rP+oaAdN6ANoCEdAqhF54dIXj3VlLg=="
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 62500,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6d1ceaf6290fda189681f13955a68fd2bb79f7decd0fbc111710979d8a2a2ec1
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1897293b02785877625b4517f7af0da32b16a6b76e11554f21090c11a449a931
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f879b987af0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f879b987b80>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f879b987c10>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f879b987ca0>", "_build": "<function ActorCriticPolicy._build at 0x7f879b987d30>", "forward": "<function ActorCriticPolicy.forward at 0x7f879b987dc0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f879b987e50>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f879b987ee0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f879b987f70>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f879b98b040>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f879b98b0d0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f879b98b160>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f879b9807e0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674036412641113695, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAADd9rj6r7Xw+g5ghP7GeNL/8FOG+iHQ7vm25qj8rUTM+mYpxv7Y1rz/rqpw+FBlDvwj81D+Y8gy/8OgnvzHqYj+SnRi/QGa/vkJo/j7bHoG+ObcTQPxVf79Z8oO9JVacvs4Ynr9JuA0/m/jQPgTLKz//3zy/okaFP+EEvb1i3cu+ZnKlvzVAOj+/QUA+LiJ7PtBGPj+br6i+3g/MvbDHkL6nJdU+R8gEwBXBAz5wkRQ/qosxP1NUTL/W6eo+K/03v/poIkCmJ687h7s5vwf2YLzrQ08/SbgNP5v40D68vb6/k+/tPFRXsD/+3ADAeBegv3kT5j7SOYc/sYYCQFAaCD/unxDAaqwkO9H+pL7SsAC/IUOUP28+T0AAPNS/FmGvO/o0Er8BQ8s/QFA+P07+fr6pzw1ANw+ZP5zwLL87kyq/zhiev0m4DT+b+NA+BMsrP71TJT+FPLY/SNi/v3PbjD/biLE+d0QUwLC3hb9ml8M7/wPAPnCOIz8zsvO+uWPAvvjbgL8H/KY/6iTMPnu2o7/DLFW/pRAUQDE6c78wVExAGGQEQOgP5b8lYd49AJLTP84Ynr9JuA0/m/jQPry9vr+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADHiKK1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAsSscPAAAAADvru+/AAAAAKPENj0AAAAAzTXoPwAAAABdrTo8AAAAALAm7T8AAAAAd+7EPQAAAAAo0+q/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAF6ngNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgM+6Ab4AAAAALEb4vwAAAACu/bI9AAAAADVU5z8AAAAAZ3FDvAAAAABcB94/AAAAAPuzp70AAAAA7+n+vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACeS5bUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAMi6c8AAAAANAL5r8AAAAA/tOVPQAAAAAsSOc/AAAAAAMxhL0AAAAAlPLvPwAAAAAH6Xk9AAAAAEbJ5L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACfXBO2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA5/wBPgAAAAA40Ny/AAAAAKjlTD0AAAAAyovdPwAAAADYsQM+AAAAAH5QAEAAAAAAtMsOPgAAAAA2gADAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQI/2kF2V3UyMAWyUTegDjAF0lEdAqNcSYkVvdnV9lChoBkdAi1uSLAHmimgHTegDaAhHQKjY4q2jO9p1fZQoaAZHQJHElHvttyhoB03oA2gIR0Co2P0vwmVrdX2UKGgGR0CBvbD50r9VaAdN6ANoCEdAqOALNW2gF3V9lChoBkdAhd0xyXD3umgHTegDaAhHQKjjXD9fkWB1fZQoaAZHQJJol4t6HCZoB03oA2gIR0Co5SxG+bmVdX2UKGgGR0CTq0hHbypaaAdN6ANoCEdAqOVJIWgvlHV9lChoBkdAgLYY+r2g4GgHTegDaAhHQKjspFkxyn11fZQoaAZHQIUgcqOLiuNoB03oA2gIR0Co7/IkZ75VdX2UKGgGR0CN6BHBk7OnaAdN6ANoCEdAqPG2jXWe6XV9lChoBkdAj+WNpVS4v2gHTegDaAhHQKjx0IiTt9h1fZQoaAZHQI5frHfdhy9oB03oA2gIR0Co+PkDIRywdX2UKGgGR0COTUBun/DMaAdN6ANoCEdAqPw0QkHD8HV9lChoBkdAlFY7NfPX1GgHTegDaAhHQKj990lJHy51fZQoaAZHQI7mp+BpYcNoB03oA2gIR0Co/hAbIcR2dX2UKGgGR0CSbZm/nGKiaAdN6ANoCEdAqQUn5N47inV9lChoBkdAknM1/YraumgHTegDaAhHQKkIaVmBe5Z1fZQoaAZHQIrg+apgkTpoB03oA2gIR0CpCjS88La3dX2UKGgGR0CGAXNXYDkmaAdN6ANoCEdAqQpPBYV6/3V9lChoBkdAkIUusYEW7GgHTegDaAhHQKkRcNnXd0t1fZQoaAZHQJCMZuejEehoB03oA2gIR0CpFLT+3pfQdX2UKGgGR0CLopVVghKUaAdN6ANoCEdAqRZzhaTwD3V9lChoBkdAiKM6P0Zm7WgHTegDaAhHQKkWjBTGYKJ1fZQoaAZHQHo+EN4JNTNoB03oA2gIR0CpHdT1K5CodX2UKGgGR0B8xSnxaxHHaAdN6ANoCEdAqSE4m7aqTHV9lChoBkdAgJDKlP8AJmgHTegDaAhHQKkjOZBsyi51fZQoaAZHQHod+rQw9JVoB03oA2gIR0CpI1nJLdvbdX2UKGgGR0Bz7s/KQq7RaAdN6ANoCEdAqSq6pT/ACXV9lChoBkdAblJt7a7EpGgHTegDaAhHQKkuCiVSn+B1fZQoaAZHQHWj/ShJyyVoB03oA2gIR0CpL+C1iONpdX2UKGgGR0CE1pRQaaTfaAdN6ANoCEdAqS/6KYRdyHV9lChoBkdAgAlUfYBeX2gHTegDaAhHQKk3fpKSPlx1fZQoaAZHQIZpzrAxi5NoB03oA2gIR0CpOuh7mdRSdX2UKGgGR0CAWVEpiI+GaAdN6ANoCEdAqTzFHSWqtHV9lChoBkdAkXpfb0voNmgHTegDaAhHQKk830Syt3h1fZQoaAZHQHf6mhufmLdoB03oA2gIR0CpRCmmtQsPdX2UKGgGR0CIm2n5SFXaaAdN6ANoCEdAqUdujbi6x3V9lChoBkdAjH/zHbRF7WgHTegDaAhHQKlJRk+X7ch1fZQoaAZHQID6YZdfLLZoB03oA2gIR0CpSWBHkLhKdX2UKGgGR0CAEi8jiXIEaAdN6ANoCEdAqVCeKZUkwHV9lChoBkdAii+QBHTZx2gHTegDaAhHQKlT9T850bN1fZQoaAZHQH0DZMURFqloB03oA2gIR0CpVctGd7OWdX2UKGgGR0CIOmDzRQaaaAdN6ANoCEdAqVXqpPykK3V9lChoBkdAkiUsUM5OrWgHTegDaAhHQKldSrGR3eN1fZQoaAZHQIcWpoIv8IloB03oA2gIR0CpYNZOi35OdX2UKGgGR0B/JOUA1ejVaAdN6ANoCEdAqWK3BtUGV3V9lChoBkdAgrJnqFAVwmgHTegDaAhHQKli0T6i0v51fZQoaAZHQH2uw+IMz/JoB03oA2gIR0CpajMbFS88dX2UKGgGR0CBu5V6u4gBaAdN6ANoCEdAqW2LoOhCdHV9lChoBkdAd0uDtPYWcmgHTegDaAhHQKlvXschkiF1fZQoaAZHQIT2l3jdYXBoB03oA2gIR0Cpb3iQtBfKdX2UKGgGR0B8ecY51eSkaAdN6ANoCEdAqXbIx+KCQXV9lChoBkdAeMTiNKh+OWgHTegDaAhHQKl6JSBshxJ1fZQoaAZHQH6/VivxH5JoB03oA2gIR0Cpe/aEal1sdX2UKGgGR0CALajZ+QU6aAdN6ANoCEdAqXwPiJfplnV9lChoBkdAb/Ws3AEdNmgHTegDaAhHQKmDaoKD0191fZQoaAZHQHprFrIo3JhoB03oA2gIR0CphuPiT+vRdX2UKGgGR0B9IDFXJYDDaAdN6ANoCEdAqYjORigCfnV9lChoBkdAfkTkqc3ERGgHTegDaAhHQKmI6+IuXeF1fZQoaAZHQHz5b70nPVxoB03oA2gIR0CpkEC+cpb2dX2UKGgGR0CBtVAprk8zaAdN6ANoCEdAqZOq08eS0XV9lChoBkdAgBJXm3fAK2gHTegDaAhHQKmVftRekYZ1fZQoaAZHQIgqaOearm1oB03oA2gIR0CplZepGWledX2UKGgGR0CGAtzT4L1FaAdN6ANoCEdAqZz+1+iJwnV9lChoBkdAjXNF9a2Wp2gHTegDaAhHQKmgbVjqfOF1fZQoaAZHQID8HdVNpM9oB03oA2gIR0CpokRT0g8sdX2UKGgGR0CGuhIHTqjaaAdN6ANoCEdAqaJdOdoWYXV9lChoBkdAgZi7Q1JlKGgHTegDaAhHQKmps7OE/Sp1fZQoaAZHQINYXb/Ot4loB03oA2gIR0CprQKxC6YmdX2UKGgGR0CCH1kpZwGXaAdN6ANoCEdAqa7Qn0Cih3V9lChoBkdAi5Nc274BWGgHTegDaAhHQKmu6cwQDmt1fZQoaAZHQINfxvJiiItoB03oA2gIR0CptkJBPbfxdX2UKGgGR0CGMwGRFI/aaAdN6ANoCEdAqbmSKziS73V9lChoBkdAh5hdd/rjYWgHTegDaAhHQKm7YFIuoP11fZQoaAZHQIbItRNyo4xoB03oA2gIR0Cpu3orOJLvdX2UKGgGR0CGko5Dqnm8aAdN6ANoCEdAqcK0XHim23V9lChoBkdAfRtzUZvUBmgHTegDaAhHQKnGAqm0mdB1fZQoaAZHQIqGBScbzbxoB03oA2gIR0Cpx8+gL7XQdX2UKGgGR0CAFK7oSteVaAdN6ANoCEdAqcfpkVeruXV9lChoBkdAf5vs052hZmgHTegDaAhHQKnPSwmE5AB1fZQoaAZHQIF6NzXBgu1oB03oA2gIR0Cp1C38fmtAdX2UKGgGR0CHPPpnpSrHaAdN6ANoCEdAqdb8/8l5W3V9lChoBkdAgv8rYPGyX2gHTegDaAhHQKnXJIwudwx1fZQoaAZHQIIcJMg2ZRdoB03oA2gIR0Cp31G7BfrsdX2UKGgGR0B2ZBZvDP4VaAdN6ANoCEdAqeKkxmCiAXV9lChoBkdAh2hZtWMjvGgHTegDaAhHQKnkbYLb5/N1fZQoaAZHQIQTSEFnqV1oB03oA2gIR0Cp5Ich1TzedX2UKGgGR0CIgw6I3zczaAdN6ANoCEdAqevJyQxN7HV9lChoBkdAfqn7/GVAzGgHTegDaAhHQKnvIU+s5n11fZQoaAZHQHRZncxj8UFoB03oA2gIR0Cp8Or5IpYtdX2UKGgGR0CBfv99+gDiaAdN6ANoCEdAqfEHC/GlynV9lChoBkdAgkIcjzI3i2gHTegDaAhHQKn4kCyQgcN1fZQoaAZHQIBU3ICEHt5oB03oA2gIR0Cp++pl8PWhdX2UKGgGR0CA5PcFhXr/aAdN6ANoCEdAqf27rZ8KHHV9lChoBkdAgCtixu89OmgHTegDaAhHQKn91iqhlDp1fZQoaAZHQIZiqTt9hJBoB03oA2gIR0CqBRIfr8iwdX2UKGgGR0B4sxdgOSW7aAdN6ANoCEdAqghlX/5tWXV9lChoBkdAdxcG2CuloGgHTegDaAhHQKoKNZX+2mZ1fZQoaAZHQHz+ngLqlgtoB03oA2gIR0CqCk7pmmLtdX2UKGgGR0CA21H5rP+oaAdN6ANoCEdAqhF54dIXj3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (949 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 524.0698974164159, "std_reward": 63.30588596418526, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-18T11:03:19.204344"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:604fce8ff08c8ddb1b4f50e204c257fa53ab7de822a631f53234199223c30d3e
3
+ size 2521