--- library_name: transformers license: apache-2.0 base_model: google/flan-t5-large tags: - generated_from_trainer metrics: - accuracy - precision - recall model-index: - name: flanT5_large_FINAL_Task2_semantic_pred results: [] --- # flanT5_large_FINAL_Task2_semantic_pred This model is a fine-tuned version of [google/flan-t5-large](https://huggingface.co/google/flan-t5-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2525 - Accuracy: 0.8814 - Precision: 0.8988 - Recall: 0.8604 - F1 score: 0.8792 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 score | |:-------------:|:------:|:-----:|:---------------:|:--------:|:---------:|:------:|:--------:| | 0.8828 | 0.4257 | 2500 | 0.8908 | 0.8257 | 0.7870 | 0.8946 | 0.8373 | | 0.7602 | 0.8515 | 5000 | 0.9174 | 0.8371 | 0.8395 | 0.8348 | 0.8371 | | 0.6466 | 1.2772 | 7500 | 0.6703 | 0.8671 | 0.9216 | 0.8034 | 0.8584 | | 0.5325 | 1.7030 | 10000 | 0.6555 | 0.8657 | 0.8560 | 0.8803 | 0.8680 | | 0.5041 | 2.1287 | 12500 | 0.8110 | 0.8557 | 0.8592 | 0.8519 | 0.8555 | | 0.3444 | 2.5545 | 15000 | 0.8804 | 0.8729 | 0.8701 | 0.8775 | 0.8738 | | 0.3324 | 2.9802 | 17500 | 0.8064 | 0.8686 | 0.8866 | 0.8462 | 0.8659 | | 0.2141 | 3.4060 | 20000 | 0.7677 | 0.8686 | 0.8529 | 0.8917 | 0.8719 | | 0.2403 | 3.8317 | 22500 | 0.6505 | 0.8686 | 0.9218 | 0.8063 | 0.8602 | | 0.1754 | 4.2575 | 25000 | 1.1009 | 0.8543 | 0.832 | 0.8889 | 0.8595 | | 0.1455 | 4.6832 | 27500 | 0.9066 | 0.8557 | 0.8189 | 0.9145 | 0.8641 | | 0.1004 | 5.1090 | 30000 | 1.0664 | 0.8686 | 0.8607 | 0.8803 | 0.8704 | | 0.0522 | 5.5347 | 32500 | 1.2579 | 0.8729 | 0.8808 | 0.8632 | 0.8719 | | 0.0742 | 5.9605 | 35000 | 1.0095 | 0.8786 | 0.8912 | 0.8632 | 0.8770 | | 0.0435 | 6.3862 | 37500 | 1.3122 | 0.8614 | 0.8342 | 0.9031 | 0.8673 | | 0.0263 | 6.8120 | 40000 | 1.1928 | 0.8743 | 0.8725 | 0.8775 | 0.875 | | 0.0226 | 7.2377 | 42500 | 1.2052 | 0.8757 | 0.8882 | 0.8604 | 0.8741 | | 0.0219 | 7.6635 | 45000 | 1.1019 | 0.8829 | 0.8854 | 0.8803 | 0.8829 | | 0.0271 | 8.0892 | 47500 | 1.2264 | 0.88 | 0.8761 | 0.8860 | 0.8810 | | 0.0073 | 8.5150 | 50000 | 1.2916 | 0.8786 | 0.8866 | 0.8689 | 0.8777 | | 0.0197 | 8.9407 | 52500 | 1.1860 | 0.88 | 0.8915 | 0.8661 | 0.8786 | | 0.0066 | 9.3665 | 55000 | 1.2615 | 0.88 | 0.8938 | 0.8632 | 0.8783 | | 0.0098 | 9.7922 | 57500 | 1.2525 | 0.8814 | 0.8988 | 0.8604 | 0.8792 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1