File size: 1,063 Bytes
9c79b62
00c50d3
 
9c79b62
 
00c50d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c79b62
 
00c50d3
 
 
9c79b62
 
00c50d3
 
9c79b62
00c50d3
 
9c79b62
00c50d3
 
 
 
 
9c79b62
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
---
language: en
license: mit
---

# Model Card
Bank Product Classifier - distilBERT
Developed by: Richard Chai, https://www.linkedin.com/in/richardchai/

This model has been fine-tuned for Bank Product Identification.
Currently, it identifies the following products:
['account',
 'atm',
 'card',
 'credit_card',
 'current_account',
 'debit_card',
 'fixed_deposit',
 'forex_account',
 'loan',
 'mobile_app',
 'others',
 'savings_account',
 'website']

i

## Model Details
- **Model type**: Transformer-based (e.g., BERT, DistilBERT, etc.)
- **Dataset**: Stanford Sentiment Treebank SST-5 or another sentiment dataset
- **Fine-tuning**: The model was fine-tuned for X epochs using a learning rate of Y on a dataset with Z samples.


## Usage
You can use this model to classify text sentiment as follows:

```python
from transformers import pipeline

model_checkpt = "richardchai/plp_pdt_clr_distilbert"
clf = pipeline('text-classification', model="model_trained/distilbert")
result = clf(['hello, how are you?', "love you", "i am feeling low"])
print(result)
```