File size: 6,242 Bytes
d921ed9 0dc9460 d921ed9 0dc9460 d921ed9 0dc9460 d921ed9 0dc9460 d921ed9 0dc9460 d921ed9 0dc9460 d921ed9 0dc9460 d921ed9 0dc9460 d921ed9 363ec61 0dc9460 363ec61 0dc9460 363ec61 0dc9460 363ec61 d921ed9 0dc9460 363ec61 d921ed9 363ec61 d921ed9 363ec61 d921ed9 363ec61 0dc9460 363ec61 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 |
---
# @see https://github.com/huggingface/hub-docs/blob/main/modelcard.md
# @see https://huggingface.co/docs/huggingface_hub/guides/model-cards#update-metadata
# @see https://huggingface.co/docs/hub/model-cards#model-card-metadata
version: '0.24'
timestamp: '20250405_014920180_UTC'
model_name: retrain-pipelines Function Caller
base_model: unsloth/Qwen2.5-1.5B
base_model_relation: adapter
library_name: transformers
datasets:
- retrain-pipelines/func_calls_ds
license: apache-2.0
language:
- en
task_categories:
- text2text-generation
tags:
- retrain-pipelines
- function-calling
- LLM Agent
- code
- unsloth
thumbnail: https://cdn-avatars.huggingface.co/v1/production/uploads/651e93137b2a2e027f9e55df/96hzBved0YMjCq--s0kad.png
# @see https://huggingface.co/docs/hub/models-widgets#enabling-a-widget
# @see https://huggingface.co/docs/hub/models-widgets-examples
# @see https://huggingface.co/docs/hub/en/model-cards#specifying-a-task--pipelinetag-
pipeline_tag: text2text-generation
widget:
- text: >-
Hello
example_title: No function call
output:
text: '[]'
- text: >-
Is 49 a perfect square?
example_title: Perfect square
output:
text: '[{"name": "is_perfect_square", "arguments": {"num": 49}}]'
mf_run_id: '95'
# @see https://huggingface.co/docs/huggingface_hub/guides/model-cards#include-evaluation-results
# @see https://huggingface.co/docs/huggingface_hub/main/en/package_reference/cards#huggingface_hub.EvalResult
model-index:
- name: retrain-pipelines Function Caller
results:
- task:
type: text2text-generation
name: Text2Text Generation
dataset:
name: retrain-pipelines Function Calling
type: retrain-pipelines/func_calls_ds
split: validation
revision: acf61743e7c3e846b74162444f86e65852d2bbf6
metrics:
- type: precision
value: 0.7742409706115723
- type: recall
value: 0.7735999822616577
- type: f1
value: 0.7736773490905762
- type: jaccard
value: 0.7556698322296143
---
<div
class="
p-6 mb-4 rounded-lg
pt-6 sm:pt-9
bg-gradient-to-b
from-purple-500
dark:from-purple-500/20
"
>
<div
class="
pl-4 rounded-lg
border-2 border-gray-100
bg-gradient-to-b
from-purple-500
dark:from-purple-500/20
"
>
<b>retrain-pipelines Function Caller</b>
</div>
<code>version 0.24</code> - <code>2025-04-05 01:49:20 UTC</code>
(retraining
<a target="_blank"
href="https://huggingface.co/retrain-pipelines/function_caller_lora/tree/retrain-pipelines_source-code/v0.24_20250405_014920180_UTC">source-code</a> |
<a target="_blank"
href="https://huggingface.co/spaces/retrain-pipelines/online_pipeline_card_renderer/?model_repo_id=retrain-pipelines/function_caller_lora&version_id=v0.24_20250405_014920180_UTC">pipeline-card</a>)
</div>
Training dataset :
- <code>retrain-pipelines/func_calls_ds v0.23</code>
(<a href="https://huggingface.co/datasets/retrain-pipelines/func_calls_ds/blob/acf61743e7c3e846b74162444f86e65852d2bbf6/README.md"
target="_blank">acf6174</a> -
2025-04-04 18:05:46 UTC)
<br />
<img alt="" src="https://img.shields.io/badge/dynamic/json?url=https%3A%2F%2Fhuggingface.co%2Fapi%2Fdatasets%2Fretrain-pipelines/func_calls_ds&query=%24.downloads&logo=huggingface&label=downloads" class="inline-block" /> <img alt="" src="https://img.shields.io/badge/dynamic/json?url=https%3A%2F%2Fhuggingface.co%2Fapi%2Fdatasets%2Fretrain-pipelines/func_calls_ds&query=%24.likes&logo=huggingface&label=likes" class="inline-block" />
Base model :
- <code>unsloth/Qwen2.5-1.5B</code>
(<a href="https://huggingface.co/unsloth/Qwen2.5-1.5B/blob/2d0a015faee2c1af360a6725a30c4d7a258ac4d4/README.md"
target="_blank">2d0a015</a> -
2025-02-06 02:32:14 UTC)
<br />
<img alt="" src="https://img.shields.io/badge/dynamic/json?url=https%3A%2F%2Fhuggingface.co%2Fapi%2Fmodels%2Funsloth/Qwen2.5-1.5B&query=%24.downloads&logo=huggingface&label=downloads" class="inline-block" /> <img alt="" src="https://img.shields.io/badge/dynamic/json?url=https%3A%2F%2Fhuggingface.co%2Fapi%2Fmodels%2Funsloth/Qwen2.5-1.5B&query=%24.likes&logo=huggingface&label=likes" class="inline-block" /><br />
arxiv :<br />
- <code><a href="https://huggingface.co/papers/2407.10671"
target="_blank">2407.10671</a></code><br />
The herein LoRa adapter can for instance be used as follows :<br />
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
from torch import device, cuda
repo_id = "retrain-pipelines/function_caller_lora"
revision = "<model_revision_commit_hash>"
model = AutoModelForCausalLM.from_pretrained(
repo_id, revision=revision, torch_dtype="auto", device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(
repo_id, revision=revision, torch_dtype="auto", device_map="auto")
device = device("cuda" if cuda.is_available() else "cpu")
def generate_tool_calls_list(query, max_new_tokens=400) -> str:
formatted_query = tokenizer.chat_template.format(query, "")
inputs = tokenizer(formatted_query, return_tensors="pt").input_ids.to(device)
outputs = model.generate(inputs, max_new_tokens=max_new_tokens, do_sample=False)
generated_text = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]
return generated_text[len(formatted_query):].strip()
generate_tool_calls_list("Is 49 a perfect square ?")
```
<br />
<br />
<div
class="
p-6 mb-4 rounded-lg
pt-6 sm:pt-9
px-4
pb-1
bg-gradient-to-t
from-purple-500
dark:from-purple-500/20
"
>
<div
class="
p-6 mb-4 rounded-lg
border-2 border-gray-100
pt-6 sm:pt-9
bg-gradient-to-t
from-purple-500
dark:from-purple-500/20
"
>
Powered by
<code><a target="_blank"
href="https://github.com/aurelienmorgan/retrain-pipelines">retrain-pipelines
0.1.1</a></code> -
<code>Run by <a target="_blank" href="https://huggingface.co/Aurelien-Morgan-Bot">Aurelien-Morgan-Bot</a></code> -
<em><b>UnslothFuncCallFlow</b></em> - mf_run_id : <code>95</code>
</div>
</div>
|