--- tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: wavlm-basic_s-f-c_8batch_5sec_0.0001lr_unfrozen results: [] --- # wavlm-basic_s-f-c_8batch_5sec_0.0001lr_unfrozen This model is a fine-tuned version of [microsoft/wavlm-large](https://huggingface.co/microsoft/wavlm-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8095 - Accuracy: 0.85 - F1: 0.8383 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.003 - num_epochs: 1000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 2.2489 | 0.99 | 47 | 2.3092 | 0.1 | 0.0182 | | 1.8953 | 2.0 | 95 | 2.1986 | 0.2 | 0.0807 | | 1.6269 | 2.99 | 142 | 2.0505 | 0.2667 | 0.1554 | | 1.4844 | 4.0 | 190 | 1.7348 | 0.4333 | 0.3482 | | 1.2047 | 4.99 | 237 | 1.3970 | 0.5833 | 0.4907 | | 1.005 | 6.0 | 285 | 1.3947 | 0.6 | 0.4957 | | 0.8541 | 6.99 | 332 | 1.0432 | 0.65 | 0.5830 | | 0.7027 | 8.0 | 380 | 1.0033 | 0.7333 | 0.6992 | | 0.72 | 8.99 | 427 | 0.9982 | 0.7833 | 0.7657 | | 0.5461 | 10.0 | 475 | 1.1170 | 0.6833 | 0.6571 | | 0.4415 | 10.99 | 522 | 0.9240 | 0.75 | 0.7402 | | 0.4022 | 12.0 | 570 | 0.9522 | 0.7667 | 0.7488 | | 0.3664 | 12.99 | 617 | 0.8290 | 0.8333 | 0.8253 | | 0.3592 | 14.0 | 665 | 1.0270 | 0.75 | 0.7313 | | 0.2985 | 14.99 | 712 | 1.0835 | 0.7667 | 0.7591 | | 0.2565 | 16.0 | 760 | 0.9175 | 0.8167 | 0.8090 | | 0.2887 | 16.99 | 807 | 0.8095 | 0.85 | 0.8383 | | 0.3038 | 18.0 | 855 | 0.8871 | 0.7833 | 0.7763 | | 0.242 | 18.99 | 902 | 0.8786 | 0.8 | 0.7875 | | 0.1994 | 20.0 | 950 | 1.0309 | 0.7833 | 0.7656 | | 0.1569 | 20.99 | 997 | 1.0706 | 0.8 | 0.7886 | | 0.1637 | 22.0 | 1045 | 0.9650 | 0.8333 | 0.8249 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3