update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- generated_from_trainer
|
4 |
+
metrics:
|
5 |
+
- accuracy
|
6 |
+
- f1
|
7 |
+
model-index:
|
8 |
+
- name: wavlm-basic_s-f-c_8batch_5sec_0.0001lr_unfrozen
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# wavlm-basic_s-f-c_8batch_5sec_0.0001lr_unfrozen
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [microsoft/wavlm-large](https://huggingface.co/microsoft/wavlm-large) on the None dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.8095
|
20 |
+
- Accuracy: 0.85
|
21 |
+
- F1: 0.8383
|
22 |
+
|
23 |
+
## Model description
|
24 |
+
|
25 |
+
More information needed
|
26 |
+
|
27 |
+
## Intended uses & limitations
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Training and evaluation data
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training procedure
|
36 |
+
|
37 |
+
### Training hyperparameters
|
38 |
+
|
39 |
+
The following hyperparameters were used during training:
|
40 |
+
- learning_rate: 0.0001
|
41 |
+
- train_batch_size: 8
|
42 |
+
- eval_batch_size: 8
|
43 |
+
- seed: 42
|
44 |
+
- gradient_accumulation_steps: 4
|
45 |
+
- total_train_batch_size: 32
|
46 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
47 |
+
- lr_scheduler_type: linear
|
48 |
+
- lr_scheduler_warmup_ratio: 0.003
|
49 |
+
- num_epochs: 1000
|
50 |
+
|
51 |
+
### Training results
|
52 |
+
|
53 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|
54 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
|
55 |
+
| 2.2489 | 0.99 | 47 | 2.3092 | 0.1 | 0.0182 |
|
56 |
+
| 1.8953 | 2.0 | 95 | 2.1986 | 0.2 | 0.0807 |
|
57 |
+
| 1.6269 | 2.99 | 142 | 2.0505 | 0.2667 | 0.1554 |
|
58 |
+
| 1.4844 | 4.0 | 190 | 1.7348 | 0.4333 | 0.3482 |
|
59 |
+
| 1.2047 | 4.99 | 237 | 1.3970 | 0.5833 | 0.4907 |
|
60 |
+
| 1.005 | 6.0 | 285 | 1.3947 | 0.6 | 0.4957 |
|
61 |
+
| 0.8541 | 6.99 | 332 | 1.0432 | 0.65 | 0.5830 |
|
62 |
+
| 0.7027 | 8.0 | 380 | 1.0033 | 0.7333 | 0.6992 |
|
63 |
+
| 0.72 | 8.99 | 427 | 0.9982 | 0.7833 | 0.7657 |
|
64 |
+
| 0.5461 | 10.0 | 475 | 1.1170 | 0.6833 | 0.6571 |
|
65 |
+
| 0.4415 | 10.99 | 522 | 0.9240 | 0.75 | 0.7402 |
|
66 |
+
| 0.4022 | 12.0 | 570 | 0.9522 | 0.7667 | 0.7488 |
|
67 |
+
| 0.3664 | 12.99 | 617 | 0.8290 | 0.8333 | 0.8253 |
|
68 |
+
| 0.3592 | 14.0 | 665 | 1.0270 | 0.75 | 0.7313 |
|
69 |
+
| 0.2985 | 14.99 | 712 | 1.0835 | 0.7667 | 0.7591 |
|
70 |
+
| 0.2565 | 16.0 | 760 | 0.9175 | 0.8167 | 0.8090 |
|
71 |
+
| 0.2887 | 16.99 | 807 | 0.8095 | 0.85 | 0.8383 |
|
72 |
+
| 0.3038 | 18.0 | 855 | 0.8871 | 0.7833 | 0.7763 |
|
73 |
+
| 0.242 | 18.99 | 902 | 0.8786 | 0.8 | 0.7875 |
|
74 |
+
| 0.1994 | 20.0 | 950 | 1.0309 | 0.7833 | 0.7656 |
|
75 |
+
| 0.1569 | 20.99 | 997 | 1.0706 | 0.8 | 0.7886 |
|
76 |
+
| 0.1637 | 22.0 | 1045 | 0.9650 | 0.8333 | 0.8249 |
|
77 |
+
|
78 |
+
|
79 |
+
### Framework versions
|
80 |
+
|
81 |
+
- Transformers 4.28.1
|
82 |
+
- Pytorch 2.0.0+cu118
|
83 |
+
- Datasets 2.12.0
|
84 |
+
- Tokenizers 0.13.3
|