--- license: apache-2.0 datasets: - remyxai/OpenSpaces tags: - remyx base_model: - Qwen/Qwen2.5-VL-3B-Instruct --- # Model Card for SpaceQwen2.5-VL-3B-Instruct **SpaceQwen2.5-VL-3B-Instruct** uses LoRA to fine-tune [Qwen2.5-VL-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-3B-Instruct) on a [dataset](https://huggingface.co/datasets/salma-remyx/OpenSpaces) designed with [VQASynth](https://github.com/remyxai/VQASynth/tree/main) to enhance spatial reasoning as in [SpatialVLM](https://spatial-vlm.github.io/) ## Model Details ### Model Description This model uses data synthesis techniques and publically available models to reproduce the work described in SpatialVLM to enhance the spatial reasoning of multimodal models. With a pipeline of expert models, we can infer spatial relationships between objects in a scene to create VQA dataset for spatial reasoning. - **Developed by:** remyx.ai - **Model type:** MultiModal Model, Vision Language Model, Qwen2.5-VL-3B-Instruct - **License:** Apache-2.0 - **Finetuned from model:** LLaVA ### Model Sources - **Dataset:** [SpaceLLaVA](https://huggingface.co/datasets/remyxai/OpenSpaces) - **Repository:** [VQASynth](https://github.com/remyxai/VQASynth/tree/main) - **Paper:** [SpatialVLM](https://arxiv.org/abs/2401.12168) ## Uses Install qwen dependencies: ``` pip install qwen-vl-utils[decord]==0.0.8 ``` To run inference with this model, run: ```python from transformers import Qwen2_5_VLForConditionalGeneration, AutoTokenizer, AutoProcessor from qwen_vl_utils import process_vision_info model = Qwen2_5_VLForConditionalGeneration.from_pretrained( "remyxai/SpaceQwen2.5-VL-3B-Instruct", torch_dtype="auto", device_map="auto" ) processor = AutoProcessor.from_pretrained("remyxai/SpaceQwen2.5-VL-3B-Instruct") messages = [ { "role": "user", "content": [ { "type": "image", "image": "https://raw.githubusercontent.com/remyxai/VQASynth/refs/heads/main/assets/warehouse_sample_2.jpeg", }, {"type": "text", "text": "What is the height of the man in the red hat in feet?"}, ], } ] # Preparation for inference text = processor.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) image_inputs, video_inputs = process_vision_info(messages) inputs = processor( text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt", ) inputs = inputs.to("cuda") # Inference: Generation of the output generated_ids = model.generate(**inputs, max_new_tokens=128) generated_ids_trimmed = [ out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) ] output_text = processor.batch_decode( generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False ) print(output_text) ``` Or try it with llama.cpp: ```bash ./llama-qwen2vl-cli -m /path/to/SpaceQwen2.5-VL-3B-Instruct/SpaceQwen2.5-VL-3B-Instruct-F16.gguf \ --mmproj /path/to/SpaceQwen2.5-VL-3B-Instruct/spaceqwen2.5-vl-3b-instruct-vision.gguf \ -p "What's the height of the man in the red hat?" \ --image /path/to/warehouse_sample_2.jpeg --threads 24 -ngl 99 ``` You can also try it on [Discord](http://discord.gg/b2yGuCNpuC ) or the [HF space](https://huggingface.co/spaces/remyxai/SpaceQwen2.5-VL-3B-Instruct). ## Citation ``` @article{chen2024spatialvlm, title = {SpatialVLM: Endowing Vision-Language Models with Spatial Reasoning Capabilities}, author = {Chen, Boyuan and Xu, Zhuo and Kirmani, Sean and Ichter, Brian and Driess, Danny and Florence, Pete and Sadigh, Dorsa and Guibas, Leonidas and Xia, Fei}, journal = {arXiv preprint arXiv:2401.12168}, year = {2024}, url = {https://arxiv.org/abs/2401.12168}, } @misc{qwen2.5-VL, title = {Qwen2.5-VL}, url = {https://qwenlm.github.io/blog/qwen2.5-vl/}, author = {Qwen Team}, month = {January}, year = {2025} } ```