smellslikeml
commited on
Commit
·
98aeb8d
1
Parent(s):
8202fdb
initial commit
Browse files- config.json +4 -0
- configuration_prismatic.py +156 -0
- modeling_prismatic.py +570 -0
- preprocessor_config.json +4 -0
- processing_prismatic.py +252 -0
- processor_config.json +6 -0
- tokenizer_config.json +3 -0
config.json
CHANGED
@@ -3,6 +3,10 @@
|
|
3 |
"architectures": [
|
4 |
"PrismaticForConditionalGeneration"
|
5 |
],
|
|
|
|
|
|
|
|
|
6 |
"hf_llm_id": "meta-llama/Meta-Llama-3.1-8B",
|
7 |
"image_resize_strategy": "letterbox",
|
8 |
"image_sizes": [
|
|
|
3 |
"architectures": [
|
4 |
"PrismaticForConditionalGeneration"
|
5 |
],
|
6 |
+
"auto_map": {
|
7 |
+
"AutoConfig": "configuration_prismatic.PrismaticConfig",
|
8 |
+
"AutoModelForVision2Seq": "modeling_prismatic.PrismaticForConditionalGeneration"
|
9 |
+
},
|
10 |
"hf_llm_id": "meta-llama/Meta-Llama-3.1-8B",
|
11 |
"image_resize_strategy": "letterbox",
|
12 |
"image_sizes": [
|
configuration_prismatic.py
ADDED
@@ -0,0 +1,156 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
configuration_prismatic.py
|
3 |
+
|
4 |
+
HuggingFace-style configuration definition for Prismatic VLMs, inheriting from `transformers.PretrainedConfig`.
|
5 |
+
Default configuration specifies `siglip-224px+7b`.
|
6 |
+
"""
|
7 |
+
|
8 |
+
from typing import Any, Dict, List, Optional
|
9 |
+
|
10 |
+
from transformers import PretrainedConfig
|
11 |
+
from transformers.models.auto import CONFIG_MAPPING
|
12 |
+
|
13 |
+
# === Utilities for Mapping Prismatic names to HF names ===
|
14 |
+
# fmt: off
|
15 |
+
VISION_BACKBONE_TO_RESOLUTION: Dict[str, List[int]] = {
|
16 |
+
"clip-vit-l": [224], "siglip-vit-so400m": [224], "dinov2-vit-l": [224], "in1k-vit-l": [224],
|
17 |
+
|
18 |
+
"clip-vit-l-336px": [336],
|
19 |
+
"siglip-vit-so400m-384px": [384],
|
20 |
+
|
21 |
+
"dinoclip-vit-l-336px": [336, 336],
|
22 |
+
"dinosiglip-vit-so-224px": [224, 224],
|
23 |
+
"dinosiglip-vit-so-384px": [384, 384],
|
24 |
+
}
|
25 |
+
VISION_BACKBONE_TO_TIMM_ID: Dict[str, List[str]] = {
|
26 |
+
"clip-vit-l": ["vit_large_patch14_clip_224.openai"],
|
27 |
+
"clip-vit-l-336px": ["vit_large_patch14_clip_336.openai"],
|
28 |
+
|
29 |
+
"dinov2-vit-l": ["vit_large_patch14_reg4_dinov2.lvd142m"],
|
30 |
+
"in1k-vit-l": ["vit_large_patch16_224.augreg_in21k_ft_in1k"],
|
31 |
+
|
32 |
+
"siglip-vit-so400m": ["vit_so400m_patch14_siglip_224"],
|
33 |
+
"siglip-vit-so400m-384px": ["vit_so400m_patch14_siglip_384"],
|
34 |
+
|
35 |
+
"dinoclip-vit-l-336px": ["vit_large_patch14_reg4_dinov2.lvd142m", "vit_large_patch14_clip_336.openai"],
|
36 |
+
"dinosiglip-vit-so-224px": ["vit_large_patch14_reg4_dinov2.lvd142m", "vit_so400m_patch14_siglip_224"],
|
37 |
+
"dinosiglip-vit-so-384px": ["vit_large_patch14_reg4_dinov2.lvd142m", "vit_so400m_patch14_siglip_384"],
|
38 |
+
}
|
39 |
+
TIMM_OVERRIDE_ACT_LAYER: Dict[str, List[Optional[str]]] = {
|
40 |
+
"clip-vit-l": ["quick_gelu"], "clip-vit-l-336px": ["quick_gelu"],
|
41 |
+
"dinov2-vit-l": [None], "in1k-vit-l": [None],
|
42 |
+
"siglip-vit-so400m": [None], "siglip-vit-so400m-384px": [None],
|
43 |
+
"dinoclip-vit-l-336px": [None, "quick_gelu"],
|
44 |
+
"dinosiglip-vit-so-224px": [None, None], "dinosiglip-vit-so-384px": [None, None]
|
45 |
+
}
|
46 |
+
|
47 |
+
LLM_BACKBONE_TO_HF_PATH = {
|
48 |
+
"llama2-7b-pure": "meta-llama/Llama-2-7b-hf", "llama2-13b-pure": "meta-llama/Llama-2-13b-hf",
|
49 |
+
"llama2-7b-chat": "meta-llama/Llama-2-7b-chat-hf", "llama2-13b-chat": "meta-llama/Llama-2-13b-chat-hf",
|
50 |
+
"llama3-1-8b-pure": "meta-llama/Meta-Llama-3.1-8B",
|
51 |
+
|
52 |
+
"vicuna-v15-7b": "lmsys/vicuna-7b-v1.5", "vicuna-v15-13b": "lmsys/vicuna-13b-v1.5",
|
53 |
+
|
54 |
+
"mistral-v0.1-7b-pure": "mistralai/Mistral-7B-v0.1",
|
55 |
+
"mistral-v0.1-7b-instruct": "mistralai/Mistral-7B-Instruct-v0.1",
|
56 |
+
|
57 |
+
"phi-2-3b": "microsoft/phi-2",
|
58 |
+
}
|
59 |
+
LLM_BACKBONE_TO_HF_METACLASS = {
|
60 |
+
"llama2-7b-pure": "llama", "llama2-13b-pure": "llama", "llama2-7b-chat": "llama", "llama2-13b-chat": "llama",
|
61 |
+
"vicuna-v15-7b": "llama", "vicuna-v15-13b": "llama", "llama3-1-8b-pure": "llama",
|
62 |
+
|
63 |
+
"mistral-v0.1-7b-pure": "mistral", "mistral-v0.1-7b-instruct": "mistral",
|
64 |
+
|
65 |
+
"phi-2-3b": "phi",
|
66 |
+
}
|
67 |
+
|
68 |
+
VALID_VISION_BACKBONES = set(VISION_BACKBONE_TO_RESOLUTION.keys())
|
69 |
+
VALID_LLM_BACKBONES = set(LLM_BACKBONE_TO_HF_PATH)
|
70 |
+
# fmt: on
|
71 |
+
|
72 |
+
class PrismaticConfig(PretrainedConfig):
|
73 |
+
model_type: str = "prismatic"
|
74 |
+
is_composition: bool = False
|
75 |
+
|
76 |
+
def __init__(
|
77 |
+
self,
|
78 |
+
vision_backbone_id: str = "siglip-vit-so400m",
|
79 |
+
llm_backbone_id: str = "vicuna-v15-7b",
|
80 |
+
arch_specifier: str = "no-align+gelu-mlp",
|
81 |
+
use_fused_vision_backbone: Optional[bool] = None,
|
82 |
+
image_resize_strategy: str = "letterbox",
|
83 |
+
text_config: Optional[Dict[str, Any]] = None,
|
84 |
+
llm_max_length: int = 2048,
|
85 |
+
pad_token_id: int = 32000,
|
86 |
+
pad_to_multiple_of: int = 64,
|
87 |
+
output_projector_states: bool = False,
|
88 |
+
vocab_size: int = 32001, # Ensure vocab_size is passed and set
|
89 |
+
**kwargs: str,
|
90 |
+
) -> None:
|
91 |
+
if vision_backbone_id not in VALID_VISION_BACKBONES:
|
92 |
+
raise ValueError(f"Vision backbone `{vision_backbone_id}` not in {VALID_VISION_BACKBONES = }")
|
93 |
+
|
94 |
+
if llm_backbone_id not in VALID_LLM_BACKBONES:
|
95 |
+
raise ValueError(f"LLM backbone `{llm_backbone_id}` not in {VALID_LLM_BACKBONES = }")
|
96 |
+
|
97 |
+
# Set Prismatic Configuration Fields
|
98 |
+
self.vision_backbone_id = vision_backbone_id
|
99 |
+
self.llm_backbone_id = llm_backbone_id
|
100 |
+
self.arch_specifier = arch_specifier
|
101 |
+
self.output_projector_states = output_projector_states
|
102 |
+
self.vocab_size = vocab_size
|
103 |
+
|
104 |
+
# [Contract] All vision backbone parameters are lists =>> supports fused backbones with different preprocessing
|
105 |
+
self.use_fused_vision_backbone = (
|
106 |
+
use_fused_vision_backbone
|
107 |
+
if use_fused_vision_backbone is not None
|
108 |
+
else any(self.vision_backbone_id.startswith(v) for v in ["dinoclip", "dinosiglip"])
|
109 |
+
)
|
110 |
+
|
111 |
+
self.timm_model_ids = VISION_BACKBONE_TO_TIMM_ID[self.vision_backbone_id]
|
112 |
+
self.timm_override_act_layers = TIMM_OVERRIDE_ACT_LAYER[self.vision_backbone_id]
|
113 |
+
self.image_sizes = VISION_BACKBONE_TO_RESOLUTION[self.vision_backbone_id]
|
114 |
+
self.image_resize_strategy = image_resize_strategy
|
115 |
+
|
116 |
+
self.hf_llm_id = LLM_BACKBONE_TO_HF_PATH[self.llm_backbone_id]
|
117 |
+
self.llm_max_length = llm_max_length
|
118 |
+
self.pad_token_id, self.pad_to_multiple_of = pad_token_id, pad_to_multiple_of
|
119 |
+
|
120 |
+
# Set padding_idx if not already set
|
121 |
+
if not hasattr(self, 'padding_idx'):
|
122 |
+
# self.padding_idx = pad_token_id
|
123 |
+
self.padding_idx = 0
|
124 |
+
|
125 |
+
# [IMPORTANT] HF Utilities actually look for a `text_config` field... we need to use that specific naming!
|
126 |
+
self.text_config = (
|
127 |
+
CONFIG_MAPPING[LLM_BACKBONE_TO_HF_METACLASS[self.llm_backbone_id]](**text_config)
|
128 |
+
if text_config is not None
|
129 |
+
else CONFIG_MAPPING[LLM_BACKBONE_TO_HF_METACLASS[self.llm_backbone_id]]()
|
130 |
+
)
|
131 |
+
|
132 |
+
# Dispatch **kwargs to super() =>> note that `pad_token_id` collides, so we pass it in here as well...
|
133 |
+
super().__init__(pad_token_id=pad_token_id, vocab_size=vocab_size, **kwargs)
|
134 |
+
|
135 |
+
|
136 |
+
class OpenVLAConfig(PrismaticConfig):
|
137 |
+
model_type: str = "openvla"
|
138 |
+
|
139 |
+
def __init__(
|
140 |
+
self,
|
141 |
+
norm_stats: Optional[Dict[str, Dict[str, Dict[str, Dict[str, List[float]]]]]] = None,
|
142 |
+
n_action_bins: int = 256,
|
143 |
+
vocab_size: int = 32001, # Default vocab size, adjust if necessary
|
144 |
+
**kwargs: str,
|
145 |
+
) -> None:
|
146 |
+
self.norm_stats = norm_stats
|
147 |
+
self.n_action_bins = n_action_bins
|
148 |
+
self.vocab_size = vocab_size
|
149 |
+
|
150 |
+
super().__init__(**kwargs)
|
151 |
+
|
152 |
+
# Ensure padding_idx is within the valid range
|
153 |
+
if not hasattr(self, 'padding_idx') or self.padding_idx >= self.vocab_size:
|
154 |
+
print(f"Padding index {self.padding_idx} is out of range. Adjusting to {self.vocab_size - 1}.")
|
155 |
+
self.padding_idx = self.vocab_size - 1
|
156 |
+
|
modeling_prismatic.py
ADDED
@@ -0,0 +1,570 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
modeling_prismatic.py
|
3 |
+
|
4 |
+
Core HuggingFace-style PrismaticPreTrainedModel and PrismaticForConditionalGeneration class definitions, inheriting
|
5 |
+
from the default `transformers.PretrainedModel`. Meant to be standalone and self-contained, but exactly replicate the
|
6 |
+
logic in `prismatic.models.vlms.prismatic.py`.
|
7 |
+
|
8 |
+
Note =>> for the time being, not adding the custom HF "docstring" formatting.
|
9 |
+
|
10 |
+
References [LLaVa, IDEFICS-2]:
|
11 |
+
=> https://github.com/huggingface/transformers/blob/main/src/transformers/models/llava/modeling_llava.py
|
12 |
+
=> https://github.com/huggingface/transformers/blob/main/src/transformers/models/idefics2/modeling_idefics2.py
|
13 |
+
"""
|
14 |
+
|
15 |
+
import logging
|
16 |
+
from dataclasses import dataclass
|
17 |
+
from functools import partial
|
18 |
+
from typing import Any, Callable, ClassVar, Dict, List, Optional, Tuple, Union
|
19 |
+
|
20 |
+
import numpy as np
|
21 |
+
import timm
|
22 |
+
import tokenizers
|
23 |
+
import torch
|
24 |
+
import torch.nn as nn
|
25 |
+
import transformers
|
26 |
+
from timm.models.vision_transformer import LayerScale
|
27 |
+
from transformers import AutoModelForCausalLM, PretrainedConfig, PreTrainedModel
|
28 |
+
from transformers.modeling_outputs import ModelOutput
|
29 |
+
|
30 |
+
from .configuration_prismatic import OpenVLAConfig, PrismaticConfig
|
31 |
+
|
32 |
+
# Get Logger
|
33 |
+
logger = logging.getLogger(__name__)
|
34 |
+
|
35 |
+
|
36 |
+
# === PyTorch/HuggingFace Default IGNORE_INDEX (for CrossEntropyLoss labels)
|
37 |
+
IGNORE_INDEX = -100
|
38 |
+
|
39 |
+
|
40 |
+
# === Utility Functions for Monkey-Patching ===
|
41 |
+
def unpack_tuple(fn: Callable[[Any], Tuple[Any]]) -> Callable[[Any], Any]:
|
42 |
+
def wrapper(*args: Any, **kwargs: Any) -> Any:
|
43 |
+
result = fn(*args, **kwargs)
|
44 |
+
return result[0] if isinstance(result, tuple) else result
|
45 |
+
|
46 |
+
return wrapper
|
47 |
+
|
48 |
+
|
49 |
+
# HF Transformers overwrites parameters with names containing `gamma`; we're going to patch VisionBackbone.LayerScale.
|
50 |
+
# =>> TIMM :: https://github.com/huggingface/pytorch-image-models/blob/main/timm/models/vision_transformer.py#L109
|
51 |
+
# =>> Transformers :: https://github.com/huggingface/transformers/blob/main/src/transformers/modeling_utils.py#L3960
|
52 |
+
def _ls_new_forward(self, x: torch.Tensor) -> torch.Tensor:
|
53 |
+
return x.mul_(self.scale_factor) if self.inplace else x * self.scale_factor
|
54 |
+
|
55 |
+
|
56 |
+
def ls_apply_patch(ls_module: LayerScale):
|
57 |
+
ls_module.scale_factor = nn.Parameter(ls_module.gamma.clone())
|
58 |
+
ls_module.forward = _ls_new_forward.__get__(ls_module, LayerScale)
|
59 |
+
del ls_module.gamma
|
60 |
+
|
61 |
+
|
62 |
+
# === Prismatic Vision Backbone (nn.Module) Definitions (w/ Fused Backbone Support) ===
|
63 |
+
class PrismaticVisionBackbone(nn.Module):
|
64 |
+
def __init__(
|
65 |
+
self,
|
66 |
+
use_fused_vision_backbone: bool,
|
67 |
+
image_sizes: List[int],
|
68 |
+
timm_model_ids: List[str],
|
69 |
+
timm_override_act_layers: List[Optional[str]],
|
70 |
+
) -> None:
|
71 |
+
super().__init__()
|
72 |
+
self.use_fused_vision_backbone = use_fused_vision_backbone
|
73 |
+
|
74 |
+
# [Contract] Validate number of (fused) vision backbones, create "alpha" featurizer and Instantiate
|
75 |
+
# =>> Note :: Monkey-Patch the `forward()` function of the backbone to ensure FSDP-compatibility
|
76 |
+
# Hardcodes `get_intermediate_layers` to return the **SECOND-TO-LAST** layer patches!
|
77 |
+
assert len(timm_model_ids) <= 2, "Prismatic models only support up to 2 (fused) vision backbones!"
|
78 |
+
self.featurizer = timm.create_model(
|
79 |
+
timm_model_ids[0],
|
80 |
+
pretrained=False,
|
81 |
+
num_classes=0,
|
82 |
+
img_size=image_sizes[0],
|
83 |
+
act_layer=timm_override_act_layers[0],
|
84 |
+
)
|
85 |
+
self.featurizer.forward = unpack_tuple(
|
86 |
+
partial(self.featurizer.get_intermediate_layers, n={len(self.featurizer.blocks) - 2})
|
87 |
+
)
|
88 |
+
self.embed_dim = self.featurizer.embed_dim
|
89 |
+
|
90 |
+
# If `use_fused_vision_backbone` =>> create "beta" featurizer
|
91 |
+
if self.use_fused_vision_backbone:
|
92 |
+
self.fused_featurizer = timm.create_model(
|
93 |
+
timm_model_ids[1],
|
94 |
+
pretrained=False,
|
95 |
+
num_classes=0,
|
96 |
+
img_size=image_sizes[1],
|
97 |
+
act_layer=timm_override_act_layers[1],
|
98 |
+
)
|
99 |
+
self.fused_featurizer.forward = unpack_tuple(
|
100 |
+
partial(self.fused_featurizer.get_intermediate_layers, n={len(self.fused_featurizer.blocks) - 2})
|
101 |
+
)
|
102 |
+
self.embed_dim += self.fused_featurizer.embed_dim
|
103 |
+
|
104 |
+
# Patch `vision_backbone.featurizer` and `vision_backbone.fused_featurizer` with HF-Compatible LayerScale
|
105 |
+
for module in self.featurizer.modules():
|
106 |
+
if isinstance(module, LayerScale):
|
107 |
+
ls_apply_patch(module)
|
108 |
+
|
109 |
+
if self.use_fused_vision_backbone:
|
110 |
+
for module in self.fused_featurizer.modules():
|
111 |
+
if isinstance(module, LayerScale):
|
112 |
+
ls_apply_patch(module)
|
113 |
+
|
114 |
+
def forward(self, pixel_values: torch.Tensor) -> torch.Tensor:
|
115 |
+
"""Run image (`pixel_values`) through featurizer; if channel-stacked, then dispatch and sequence stack."""
|
116 |
+
if not self.use_fused_vision_backbone:
|
117 |
+
return self.featurizer(pixel_values)
|
118 |
+
|
119 |
+
# Split `pixel_values :: [bsz, 2 * 3, resolution, resolution]` =>> featurize =>> channel stack
|
120 |
+
img, img_fused = torch.split(pixel_values, [3, 3], dim=1)
|
121 |
+
patches, patches_fused = self.featurizer(img), self.fused_featurizer(img_fused)
|
122 |
+
|
123 |
+
return torch.cat([patches, patches_fused], dim=2)
|
124 |
+
|
125 |
+
|
126 |
+
# === Prismatic Projector (nn.Module) Definitions ===
|
127 |
+
class PrismaticProjector(nn.Module):
|
128 |
+
def __init__(self, use_fused_vision_backbone: bool, vision_dim: int, llm_dim: int) -> None:
|
129 |
+
super().__init__()
|
130 |
+
self.use_fused_vision_backbone = use_fused_vision_backbone
|
131 |
+
self.vision_dim, self.llm_dim = vision_dim, llm_dim
|
132 |
+
|
133 |
+
# Switch on `use_fused_vision_backbone` =>> use slightly different MLPs and projection factors!
|
134 |
+
if not self.use_fused_vision_backbone:
|
135 |
+
self.fc1 = nn.Linear(self.vision_dim, self.llm_dim, bias=True)
|
136 |
+
self.fc2 = nn.Linear(self.llm_dim, self.llm_dim, bias=True)
|
137 |
+
self.act_fn1 = nn.GELU()
|
138 |
+
else:
|
139 |
+
initial_projection_dim = 4 * vision_dim
|
140 |
+
self.fc1 = nn.Linear(self.vision_dim, initial_projection_dim, bias=True)
|
141 |
+
self.fc2 = nn.Linear(initial_projection_dim, self.llm_dim, bias=True)
|
142 |
+
self.fc3 = nn.Linear(self.llm_dim, self.llm_dim, bias=True)
|
143 |
+
self.act_fn1 = nn.GELU()
|
144 |
+
self.act_fn2 = nn.GELU()
|
145 |
+
|
146 |
+
def forward(self, img_patches: torch.Tensor) -> torch.Tensor:
|
147 |
+
if not self.use_fused_vision_backbone:
|
148 |
+
projected_features = self.fc1(img_patches)
|
149 |
+
projected_features = self.act_fn1(projected_features)
|
150 |
+
projected_features = self.fc2(projected_features)
|
151 |
+
else:
|
152 |
+
projected_features = self.fc1(img_patches)
|
153 |
+
projected_features = self.act_fn1(projected_features)
|
154 |
+
projected_features = self.fc2(projected_features)
|
155 |
+
projected_features = self.act_fn2(projected_features)
|
156 |
+
projected_features = self.fc3(projected_features)
|
157 |
+
|
158 |
+
return projected_features
|
159 |
+
|
160 |
+
|
161 |
+
# === Main HF Class Definitions ===
|
162 |
+
@dataclass
|
163 |
+
class PrismaticCausalLMOutputWithPast(ModelOutput):
|
164 |
+
"""Base class for Prismatic casual (visually-conditioned) language model outputs; also exposes visual features."""
|
165 |
+
|
166 |
+
loss: Optional[torch.FloatTensor] = None
|
167 |
+
logits: torch.FloatTensor = None
|
168 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
|
169 |
+
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
|
170 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
171 |
+
|
172 |
+
# Additions for VLMs
|
173 |
+
projector_features: Optional[torch.FloatTensor] = None
|
174 |
+
|
175 |
+
|
176 |
+
class PrismaticPreTrainedModel(PreTrainedModel):
|
177 |
+
config_class: PretrainedConfig = PrismaticConfig
|
178 |
+
base_model_prefix: str = "model"
|
179 |
+
supports_gradient_checkpointing: bool = True
|
180 |
+
|
181 |
+
_no_split_modules: ClassVar[List[str]] = ["PrismaticProjector"]
|
182 |
+
_skip_keys_device_placement: str = "past_key_values"
|
183 |
+
_supports_flash_attn_2: bool = True
|
184 |
+
|
185 |
+
def _init_weights(self, module: nn.Module) -> None:
|
186 |
+
# Important :: this HF ported version is *not* meant for training from scratch; only inference and fine-tuning!
|
187 |
+
# => As such, this init_weights code is not correct; if training VLMs from scratch, use the main codebase at
|
188 |
+
# https://github.com/TRI-ML/prismatic-vlms
|
189 |
+
std = (
|
190 |
+
self.config.initializer_range
|
191 |
+
if hasattr(self.config, "initializer_range")
|
192 |
+
else self.config.text_config.initializer_range
|
193 |
+
)
|
194 |
+
|
195 |
+
if hasattr(module, "class_embedding"):
|
196 |
+
module.class_embedding.data.normal_(mean=0.0, std=std)
|
197 |
+
|
198 |
+
if isinstance(module, (nn.Linear, nn.Conv2d)):
|
199 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
200 |
+
if module.bias is not None:
|
201 |
+
module.bias.data.zero_()
|
202 |
+
elif isinstance(module, nn.Embedding):
|
203 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
204 |
+
if module.padding_idx is not None:
|
205 |
+
module.weight.data[module.padding_idx].zero_()
|
206 |
+
|
207 |
+
@property
|
208 |
+
def _supports_sdpa(self) -> bool:
|
209 |
+
"""Check LLM supports SDPA Attention"""
|
210 |
+
return self.language_model._supports_sdpa
|
211 |
+
|
212 |
+
|
213 |
+
class PrismaticForConditionalGeneration(PrismaticPreTrainedModel):
|
214 |
+
def __init__(self, config: PrismaticConfig) -> None:
|
215 |
+
super().__init__(config)
|
216 |
+
|
217 |
+
# [Validation] Lightweight Validate on `config` Fields + Dependency Versions
|
218 |
+
if config.use_fused_vision_backbone is None:
|
219 |
+
raise ValueError("Missing config field `use_fused_vision_backbone`")
|
220 |
+
|
221 |
+
if timm.__version__ not in {"0.9.10", "0.9.11", "0.9.12", "0.9.16"}:
|
222 |
+
raise NotImplementedError(
|
223 |
+
"TIMM Version must be >= 0.9.10 and < 1.0.0 (breaking); please raise a GitHub Issue "
|
224 |
+
"if you urgently need support for latest TIMM versions."
|
225 |
+
)
|
226 |
+
|
227 |
+
if (transformers.__version__ != "4.40.1") or (tokenizers.__version__ != "0.19.1"):
|
228 |
+
logger.warning(
|
229 |
+
f"Expected `transformers==4.40.1` and `tokenizers==0.19.1` but got "
|
230 |
+
f"`transformers=={transformers.__version__}` and `tokenizers=={tokenizers.__version__}`; "
|
231 |
+
f"there might be inference-time regressions due to dependency changes. If in doubt, please"
|
232 |
+
f"use the above versions."
|
233 |
+
)
|
234 |
+
|
235 |
+
# Instantiate PrismaticVisionBackbone (w/ Potential Fused Backbone)
|
236 |
+
self.vision_backbone = PrismaticVisionBackbone(
|
237 |
+
config.use_fused_vision_backbone, config.image_sizes, config.timm_model_ids, config.timm_override_act_layers
|
238 |
+
)
|
239 |
+
|
240 |
+
# Create Multimodal Projector
|
241 |
+
self.projector = PrismaticProjector(
|
242 |
+
config.use_fused_vision_backbone,
|
243 |
+
vision_dim=self.vision_backbone.embed_dim,
|
244 |
+
llm_dim=config.text_config.hidden_size,
|
245 |
+
)
|
246 |
+
|
247 |
+
print("CONFIG: ", config)
|
248 |
+
print("CONFIG text: ", config.text_config)
|
249 |
+
print("CONFIG attn implementation: ", config._attn_implementation)
|
250 |
+
# Instantiate LLM Backbone
|
251 |
+
self.language_model = AutoModelForCausalLM.from_config(
|
252 |
+
config.text_config, attn_implementation=config._attn_implementation
|
253 |
+
)
|
254 |
+
print("loaded language model: ", self.language_model)
|
255 |
+
#self.language_model = AutoModelForCausalLM.from_pretrained("meta-llama/Meta-Llama-3.1-8B")
|
256 |
+
self.vocab_size = config.text_config.vocab_size
|
257 |
+
self.pad_token_id = config.pad_token_id
|
258 |
+
|
259 |
+
# HF Boilerplate =>> initializes weights via `_init_weights()` and sets gradient checkpointing
|
260 |
+
self.post_init()
|
261 |
+
|
262 |
+
# === `PreTrainedModel` Boilerplate ===
|
263 |
+
def get_input_embeddings(self) -> nn.Module:
|
264 |
+
return self.language_model.get_input_embeddings()
|
265 |
+
|
266 |
+
def set_input_embeddings(self, value: nn.Module) -> None:
|
267 |
+
self.language_model.set_input_embeddings(value)
|
268 |
+
|
269 |
+
def get_output_embeddings(self) -> nn.Module:
|
270 |
+
return self.language_model.get_output_embeddings()
|
271 |
+
|
272 |
+
def set_output_embeddings(self, new_embeddings: nn.Module) -> None:
|
273 |
+
self.language_model.set_output_embeddings(new_embeddings)
|
274 |
+
|
275 |
+
def get_decoder(self) -> nn.Module:
|
276 |
+
return self.language_model.get_decoder()
|
277 |
+
|
278 |
+
def set_decoder(self, decoder: nn.Module) -> None:
|
279 |
+
self.language_model.set_decoder(decoder)
|
280 |
+
|
281 |
+
def tie_weights(self) -> None:
|
282 |
+
self.language_model.tie_weights() # Note: `Llama-2` and `Mistral` don't tie weights (no-op)
|
283 |
+
|
284 |
+
def resize_token_embeddings(
|
285 |
+
self, new_num_tokens: Optional[int] = None, pad_to_multiple_of: Optional[int] = None
|
286 |
+
) -> nn.Embedding:
|
287 |
+
updated_embeddings = self.language_model.resize_token_embeddings(new_num_tokens, pad_to_multiple_of)
|
288 |
+
|
289 |
+
# Update config/instance variables
|
290 |
+
self.config.text_config.vocab_size = updated_embeddings.num_embeddings
|
291 |
+
self.vocab_size = updated_embeddings.num_embeddings
|
292 |
+
|
293 |
+
return updated_embeddings
|
294 |
+
|
295 |
+
# === Core Prismatic VLM `forward()` Logic ===
|
296 |
+
def forward(
|
297 |
+
self,
|
298 |
+
input_ids: Optional[torch.LongTensor] = None,
|
299 |
+
attention_mask: Optional[torch.Tensor] = None,
|
300 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
301 |
+
labels: Optional[torch.LongTensor] = None,
|
302 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
303 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
304 |
+
use_cache: Optional[bool] = None,
|
305 |
+
output_attentions: Optional[bool] = None,
|
306 |
+
output_hidden_states: Optional[bool] = None,
|
307 |
+
output_projector_features: Optional[bool] = None,
|
308 |
+
return_dict: Optional[bool] = None,
|
309 |
+
) -> Union[Tuple, PrismaticCausalLMOutputWithPast]:
|
310 |
+
"""Run a forward pass through the VLM, returning a PrismaticCausalLMOutputWithPast instance."""
|
311 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
312 |
+
output_hidden_states = (
|
313 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
314 |
+
)
|
315 |
+
output_projector_features = output_projector_features if output_projector_features is not None else False
|
316 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
317 |
+
|
318 |
+
# Respect `use_cache` only if not training (even if `gradient_checkpointing` is off)
|
319 |
+
use_cache = use_cache and not self.training
|
320 |
+
|
321 |
+
# Instantiate Placeholder for Projector Features
|
322 |
+
projected_patch_embeddings = None
|
323 |
+
|
324 |
+
# Note :: We only support forward passes with the following cases:
|
325 |
+
# => Cached Generation :: (input_ids.shape[1] == 1) and (past_key_values is not None)
|
326 |
+
# => Unimodal Forward :: (pixel_values is None)
|
327 |
+
# => Multimodal Forward :: (pixel_values is not None) and (input_ids/embeds.shape[0] == pixel_values.shape[0])
|
328 |
+
|
329 |
+
# === Handle Generation with Cache (`input_ids.shape[1] == 1`) =>> requires `past_keys_values` ===
|
330 |
+
if input_ids.shape[1] == 1:
|
331 |
+
assert input_ids.shape[0] == 1, "Generation is only currently supported for batch size of 1!"
|
332 |
+
assert past_key_values is not None, "You must provide `past_key_values` during cached generation!"
|
333 |
+
assert labels is None, "Unexpected key `labels` provided during cached generation!"
|
334 |
+
|
335 |
+
language_model_output = self.language_model(
|
336 |
+
input_ids=input_ids,
|
337 |
+
attention_mask=None,
|
338 |
+
position_ids=None,
|
339 |
+
past_key_values=past_key_values,
|
340 |
+
inputs_embeds=None,
|
341 |
+
labels=None,
|
342 |
+
use_cache=use_cache,
|
343 |
+
output_attentions=output_attentions,
|
344 |
+
output_hidden_states=output_hidden_states,
|
345 |
+
return_dict=return_dict,
|
346 |
+
)
|
347 |
+
|
348 |
+
# === Handle Unimodal Forward ===
|
349 |
+
elif pixel_values is None:
|
350 |
+
assert (input_ids is not None) and (inputs_embeds is None), "Missing `input_ids` in language-only forward!"
|
351 |
+
assert past_key_values is None, "Unexpected key `past_key_values` provided during language-only forward!"
|
352 |
+
|
353 |
+
language_model_output = self.language_model(
|
354 |
+
input_ids=input_ids,
|
355 |
+
attention_mask=attention_mask,
|
356 |
+
position_ids=None,
|
357 |
+
past_key_values=None,
|
358 |
+
inputs_embeds=None,
|
359 |
+
labels=labels,
|
360 |
+
use_cache=use_cache,
|
361 |
+
output_attentions=output_attentions,
|
362 |
+
output_hidden_states=output_hidden_states,
|
363 |
+
return_dict=return_dict,
|
364 |
+
)
|
365 |
+
|
366 |
+
# === Handle Multimodal Forward ===
|
367 |
+
elif (input_ids.shape[0] == pixel_values.shape[0]) or (inputs_embeds.shape[0] == pixel_values.shape[0]):
|
368 |
+
assert past_key_values is None, "Unexpected key `past_key_values` provided during language-only forward!"
|
369 |
+
|
370 |
+
# Visual Feature Extraction
|
371 |
+
patch_features = self.vision_backbone(pixel_values)
|
372 |
+
|
373 |
+
# Projection Logic =>> Update Attention Mask
|
374 |
+
projected_patch_embeddings = self.projector(patch_features)
|
375 |
+
projected_patch_attention_mask = None
|
376 |
+
if attention_mask is not None:
|
377 |
+
projected_patch_attention_mask = torch.full(
|
378 |
+
(projected_patch_embeddings.shape[0], projected_patch_embeddings.shape[1]),
|
379 |
+
fill_value=True,
|
380 |
+
dtype=attention_mask.dtype,
|
381 |
+
device=attention_mask.device,
|
382 |
+
)
|
383 |
+
|
384 |
+
# Get Input Embeddings (from Language Model Embeddings)
|
385 |
+
input_embeddings = self.get_input_embeddings()(input_ids)
|
386 |
+
|
387 |
+
# Build Multimodal Embeddings & Attention Mask =>> Prismatic defaults to inserting after <BOS> token (1:)
|
388 |
+
multimodal_embeddings = torch.cat(
|
389 |
+
[input_embeddings[:, :1, :], projected_patch_embeddings, input_embeddings[:, 1:, :]], dim=1
|
390 |
+
)
|
391 |
+
multimodal_attention_mask = None
|
392 |
+
if attention_mask is not None:
|
393 |
+
multimodal_attention_mask = torch.cat(
|
394 |
+
[attention_mask[:, :1], projected_patch_attention_mask, attention_mask[:, 1:]], dim=1
|
395 |
+
)
|
396 |
+
|
397 |
+
# Build Labels (if specified) =>> Ignore Labels for Patch Embeddings
|
398 |
+
multimodal_labels = None
|
399 |
+
if labels is not None:
|
400 |
+
projected_patch_labels = torch.full(
|
401 |
+
(projected_patch_embeddings.shape[0], projected_patch_embeddings.shape[1]),
|
402 |
+
fill_value=IGNORE_INDEX,
|
403 |
+
dtype=labels.dtype,
|
404 |
+
device=labels.device,
|
405 |
+
)
|
406 |
+
multimodal_labels = torch.cat([labels[:, :1], projected_patch_labels, labels[:, 1:]], dim=1)
|
407 |
+
|
408 |
+
# Dispatch to Language Model
|
409 |
+
language_model_output = self.language_model(
|
410 |
+
input_ids=None,
|
411 |
+
attention_mask=multimodal_attention_mask,
|
412 |
+
position_ids=None,
|
413 |
+
past_key_values=None,
|
414 |
+
inputs_embeds=multimodal_embeddings,
|
415 |
+
labels=multimodal_labels,
|
416 |
+
use_cache=use_cache,
|
417 |
+
output_attentions=output_attentions,
|
418 |
+
output_hidden_states=output_hidden_states,
|
419 |
+
return_dict=return_dict,
|
420 |
+
)
|
421 |
+
|
422 |
+
# === Otherwise =>> Assume Invalid! ===
|
423 |
+
elif (input_ids.shape[0] != pixel_values.shape[0]) or (inputs_embeds.shape[0] != pixel_values.shape[0]):
|
424 |
+
raise ValueError("Non-homogenous batch of (text, image) input -- forward() does not support mixed batches!")
|
425 |
+
|
426 |
+
else:
|
427 |
+
raise ValueError(
|
428 |
+
"Invalid PrismaticForConditionalGeneration `forward()` call with provided arguments:\n"
|
429 |
+
f"=> `input_ids` = {input_ids is not None}\n"
|
430 |
+
f"=> `attention_mask` = {attention_mask is not None}\n"
|
431 |
+
f"=> `pixel_values` = {pixel_values is not None}\n"
|
432 |
+
f"=> `labels` = {labels is not None}\n"
|
433 |
+
f"=> `input_embeds` = {inputs_embeds is not None}\n"
|
434 |
+
f"=> `past_key_values` = {past_key_values is not None}\n"
|
435 |
+
f"=> `use_cache` = {use_cache}"
|
436 |
+
)
|
437 |
+
|
438 |
+
# Unpack `language_model_output` and return PrismaticCausalLMOutputWithPast (or tuple if not `return_dict`)
|
439 |
+
if not return_dict:
|
440 |
+
if output_projector_features and (projected_patch_embeddings is not None):
|
441 |
+
return *language_model_output, projected_patch_embeddings
|
442 |
+
|
443 |
+
return language_model_output
|
444 |
+
|
445 |
+
return PrismaticCausalLMOutputWithPast(
|
446 |
+
loss=language_model_output.loss,
|
447 |
+
logits=language_model_output.logits,
|
448 |
+
past_key_values=language_model_output.past_key_values,
|
449 |
+
hidden_states=language_model_output.hidden_states,
|
450 |
+
attentions=language_model_output.attentions,
|
451 |
+
projector_features=projected_patch_embeddings,
|
452 |
+
)
|
453 |
+
|
454 |
+
# === GenerationMixin Methods ===
|
455 |
+
def prepare_inputs_for_generation(
|
456 |
+
self,
|
457 |
+
input_ids: Optional[torch.Tensor] = None,
|
458 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
459 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
460 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
461 |
+
attention_mask: Optional[torch.Tensor] = None,
|
462 |
+
**kwargs: str,
|
463 |
+
) -> Dict[str, torch.Tensor]:
|
464 |
+
"""Borrowed from `LlamaForCausalLM` and simplified for batch size = 1; mirrors original PrismaticVLM logic."""
|
465 |
+
if ((input_ids is not None) and (input_ids.shape[0] > 1)) or (
|
466 |
+
(inputs_embeds is not None) and (inputs_embeds.shape[0] > 1)
|
467 |
+
):
|
468 |
+
raise ValueError("Generation with batch size > 1 is not currently supported!")
|
469 |
+
|
470 |
+
# Handle `past_key_values` (cache) =>> assume `input_ids` just has unprocessed tokens
|
471 |
+
if past_key_values is not None:
|
472 |
+
input_ids = input_ids[:, -1:]
|
473 |
+
|
474 |
+
# If `input_embeds` are passed, we only want to use them in the 1st generation step
|
475 |
+
if inputs_embeds is not None and past_key_values is None:
|
476 |
+
model_inputs = {"input_embeds": inputs_embeds}
|
477 |
+
else:
|
478 |
+
model_inputs = {"input_ids": input_ids}
|
479 |
+
|
480 |
+
# Make sure `pixel_values` are preserved in `model_inputs`
|
481 |
+
model_inputs.update(
|
482 |
+
{
|
483 |
+
"attention_mask": attention_mask,
|
484 |
+
"pixel_values": pixel_values,
|
485 |
+
"past_key_values": past_key_values,
|
486 |
+
"use_cache": kwargs.get("use_cache"),
|
487 |
+
}
|
488 |
+
)
|
489 |
+
|
490 |
+
return model_inputs
|
491 |
+
|
492 |
+
# Defer to Language Model (all handle this differently, with different return types)
|
493 |
+
def _reorder_cache(self, *args, **kwargs) -> Any:
|
494 |
+
return self.language_model._reorder_cache(*args, **kwargs)
|
495 |
+
|
496 |
+
|
497 |
+
class OpenVLAForActionPrediction(PrismaticForConditionalGeneration):
|
498 |
+
config_class: PretrainedConfig = OpenVLAConfig
|
499 |
+
|
500 |
+
def __init__(self, config: OpenVLAConfig) -> None:
|
501 |
+
super().__init__(config)
|
502 |
+
self.norm_stats = config.norm_stats
|
503 |
+
|
504 |
+
# Compute action bins
|
505 |
+
self.bins = np.linspace(-1, 1, config.n_action_bins)
|
506 |
+
self.bin_centers = (self.bins[:-1] + self.bins[1:]) / 2.0
|
507 |
+
|
508 |
+
# Compute vocab size for de-tokenization -- revert added "multiple of"
|
509 |
+
self.vocab_size = self.config.text_config.vocab_size - self.config.pad_to_multiple_of
|
510 |
+
|
511 |
+
def predict_action(
|
512 |
+
self, input_ids: Optional[torch.LongTensor] = None, unnorm_key: Optional[str] = None, **kwargs: str
|
513 |
+
) -> np.ndarray:
|
514 |
+
"""Thin wrapper around super().generate() that decodes predicted actions and de-normalizes them."""
|
515 |
+
|
516 |
+
# We need to add this special empty token ('') after the colon (':') token in "ASSISTANT:"
|
517 |
+
# in order for the predictions to match the training configuration and be accurate.
|
518 |
+
input_ids = torch.cat(
|
519 |
+
(input_ids, torch.unsqueeze(torch.Tensor([29871]).long(), dim=0).to(input_ids.device)), dim=1
|
520 |
+
)
|
521 |
+
|
522 |
+
# Run VLA inference
|
523 |
+
generated_ids = self.generate(input_ids, max_new_tokens=self.get_action_dim(unnorm_key), **kwargs)
|
524 |
+
|
525 |
+
# Extract predicted action tokens and translate into (normalized) continuous actions
|
526 |
+
predicted_action_token_ids = generated_ids[0, -self.get_action_dim(unnorm_key) :].cpu().numpy()
|
527 |
+
discretized_actions = self.vocab_size - predicted_action_token_ids
|
528 |
+
discretized_actions = np.clip(discretized_actions - 1, a_min=0, a_max=self.bin_centers.shape[0] - 1)
|
529 |
+
normalized_actions = self.bin_centers[discretized_actions]
|
530 |
+
|
531 |
+
# Unnormalize actions
|
532 |
+
action_norm_stats = self.get_action_stats(unnorm_key)
|
533 |
+
mask = action_norm_stats.get("mask", np.ones_like(action_norm_stats["q01"], dtype=bool))
|
534 |
+
action_high, action_low = np.array(action_norm_stats["q99"]), np.array(action_norm_stats["q01"])
|
535 |
+
actions = np.where(
|
536 |
+
mask,
|
537 |
+
0.5 * (normalized_actions + 1) * (action_high - action_low) + action_low,
|
538 |
+
normalized_actions,
|
539 |
+
)
|
540 |
+
|
541 |
+
return actions
|
542 |
+
|
543 |
+
@staticmethod
|
544 |
+
def _check_unnorm_key(norm_stats: Dict[str, Dict[str, Any]], unnorm_key: Optional[str]) -> str:
|
545 |
+
if unnorm_key is None and len(norm_stats) != 1:
|
546 |
+
raise ValueError(
|
547 |
+
f"Your model was trained on more than one dataset. "
|
548 |
+
f"Please pass a `unnorm_key` from the following options to choose the statistics used for "
|
549 |
+
f"de-normalizing actions: {norm_stats.keys()}"
|
550 |
+
)
|
551 |
+
|
552 |
+
# If None, grab the (singular) dataset in `norm_stats` to use as `unnorm_key`
|
553 |
+
unnorm_key = unnorm_key if unnorm_key is not None else next(iter(norm_stats.keys()))
|
554 |
+
if unnorm_key not in norm_stats:
|
555 |
+
raise ValueError(
|
556 |
+
f"The `unnorm_key` you chose ({unnorm_key = }) is not in the available statistics. "
|
557 |
+
f"Please choose from: {norm_stats.keys()}"
|
558 |
+
)
|
559 |
+
|
560 |
+
return unnorm_key
|
561 |
+
|
562 |
+
def get_action_dim(self, unnorm_key: Optional[str] = None) -> int:
|
563 |
+
"""Get the dimensionality of the policy's action space."""
|
564 |
+
unnorm_key = self._check_unnorm_key(self.norm_stats, unnorm_key)
|
565 |
+
return len(self.norm_stats[unnorm_key]["action"]["q01"])
|
566 |
+
|
567 |
+
def get_action_stats(self, unnorm_key: Optional[str] = None) -> Dict[str, Any]:
|
568 |
+
"""Get all the logged statistics for the given dataset."""
|
569 |
+
unnorm_key = self._check_unnorm_key(self.norm_stats, unnorm_key)
|
570 |
+
return self.norm_stats[unnorm_key]["action"]
|
preprocessor_config.json
CHANGED
@@ -1,4 +1,8 @@
|
|
1 |
{
|
|
|
|
|
|
|
|
|
2 |
"image_processor_type": "PrismaticImageProcessor",
|
3 |
"image_resize_strategy": "letterbox",
|
4 |
"input_sizes": [
|
|
|
1 |
{
|
2 |
+
"auto_map": {
|
3 |
+
"AutoImageProcessor": "processing_prismatic.PrismaticImageProcessor",
|
4 |
+
"AutoProcessor": "processing_prismatic.PrismaticProcessor"
|
5 |
+
},
|
6 |
"image_processor_type": "PrismaticImageProcessor",
|
7 |
"image_resize_strategy": "letterbox",
|
8 |
"input_sizes": [
|
processing_prismatic.py
ADDED
@@ -0,0 +1,252 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
processing_prismatic.py
|
3 |
+
|
4 |
+
HuggingFace-style preprocessor definitions for Prismatic VLMs, inheriting from `ProcessorMixin`. Default configuration
|
5 |
+
specifies `siglip-224px+7b`.
|
6 |
+
"""
|
7 |
+
|
8 |
+
from typing import Any, ClassVar, List, Optional, Tuple, Union
|
9 |
+
|
10 |
+
import timm.data
|
11 |
+
import torch
|
12 |
+
import torchvision.transforms.functional as TVF
|
13 |
+
from PIL import Image
|
14 |
+
from torchvision.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor
|
15 |
+
from transformers import PreTrainedTokenizerBase
|
16 |
+
from transformers.image_processing_utils import BatchFeature, ImageProcessingMixin
|
17 |
+
from transformers.processing_utils import ProcessorMixin
|
18 |
+
from transformers.tokenization_utils import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
|
19 |
+
from transformers.utils import TensorType
|
20 |
+
|
21 |
+
|
22 |
+
# === Image Processing ===
|
23 |
+
def letterbox_pad_transform(image: Image.Image, padding_fill_value: Tuple[int, int, int]) -> Image.Image:
|
24 |
+
"""Given a PIL.Image, pad to square by adding a symmetric border around the height/width."""
|
25 |
+
(w, h), max_wh = image.size, max(image.size)
|
26 |
+
horizontal_pad, vertical_pad = int((max_wh - w) / 2), int((max_wh - h) / 2)
|
27 |
+
padding = (horizontal_pad, vertical_pad, horizontal_pad, vertical_pad)
|
28 |
+
|
29 |
+
return TVF.pad(image, padding, fill=padding_fill_value, padding_mode="constant")
|
30 |
+
|
31 |
+
|
32 |
+
class PrismaticImageProcessor(ImageProcessingMixin):
|
33 |
+
model_input_names: ClassVar[List[str]] = ["pixel_values"]
|
34 |
+
|
35 |
+
def __init__(
|
36 |
+
self,
|
37 |
+
use_fused_vision_backbone: bool = False,
|
38 |
+
image_resize_strategy: str = "letterbox",
|
39 |
+
input_sizes: Optional[List[Tuple[int, int, int]]] = None,
|
40 |
+
interpolations: Optional[List[str]] = None,
|
41 |
+
means: Optional[List[Tuple[float, float, float]]] = None,
|
42 |
+
stds: Optional[List[Tuple[float, float, float]]] = None,
|
43 |
+
**kwargs: str,
|
44 |
+
) -> None:
|
45 |
+
"""
|
46 |
+
Initialize a PrismaticImageProcessor as a wrapper around a torchvision transform; this transform will be
|
47 |
+
created by TIMM, and edited to follow our custom `image_resize_strategy` logic.
|
48 |
+
@param use_fused_vision_backbone: Boolean indicating single or fused (dual) vision backbone
|
49 |
+
@param image_resize_strategy: Prismatic image resize strategy in < resize-naive | resize-crop | letterbox >
|
50 |
+
@param input_size: [TIMM :: `data_cfg`] Input image size as tuple (channels, width, height)
|
51 |
+
@param interpolation: [TIMM :: `data_cfg`] Interpolation as string (default: "bicubic")
|
52 |
+
@param mean: [TIMM :: `data_cfg`] Normalization mean as float tuple (or two-tuple if `fused_backbone`)
|
53 |
+
@param std: [TIMM :: `data_cfg`] Normalization std as float tuple (or two-tuple if `fused_backbone`)
|
54 |
+
"""
|
55 |
+
self.use_fused_vision_backbone = use_fused_vision_backbone
|
56 |
+
self.image_resize_strategy = image_resize_strategy
|
57 |
+
|
58 |
+
# Handle `None` default values
|
59 |
+
input_sizes = [(3, 224, 224)] if input_sizes is None else input_sizes
|
60 |
+
means = [(0.5, 0.5, 0.5)] if means is None else means
|
61 |
+
stds = [(0.5, 0.5, 0.5)] if stds is None else stds
|
62 |
+
|
63 |
+
# TIMM `data_cfg` Parameters
|
64 |
+
self.input_sizes, self.interpolations, self.means, self.stds = input_sizes, interpolations, means, stds
|
65 |
+
|
66 |
+
# Grab torchvision transforms via TIMM =>> need to parse for specific "functional" transform values!
|
67 |
+
self.tvf_resize_params, self.tvf_crop_params, self.tvf_normalize_params = [], [], []
|
68 |
+
self.tvf_do_letterbox, self.tvf_letterbox_fill = False, None
|
69 |
+
|
70 |
+
for idx in range(len(input_sizes)):
|
71 |
+
transform = timm.data.create_transform(
|
72 |
+
input_size=self.input_sizes[idx],
|
73 |
+
interpolation=self.interpolations[idx],
|
74 |
+
mean=self.means[idx],
|
75 |
+
std=self.stds[idx],
|
76 |
+
crop_pct=1.0, # Set to 1.0 to ignore cropping (initial Resize sets `input_size`)
|
77 |
+
crop_mode="center", # Default crop mode -- no-op when `crop_pct == 1.0`
|
78 |
+
is_training=False, # No image augmentations when loading the transform!
|
79 |
+
)
|
80 |
+
|
81 |
+
# [Validation] Ensure appropriate transform structure, expected sizes
|
82 |
+
if not (
|
83 |
+
isinstance(transform, Compose)
|
84 |
+
and (len(transform.transforms) == 4)
|
85 |
+
and isinstance(transform.transforms[0], Resize)
|
86 |
+
and isinstance(transform.transforms[1], CenterCrop)
|
87 |
+
and isinstance(transform.transforms[2], ToTensor)
|
88 |
+
and isinstance(transform.transforms[3], Normalize)
|
89 |
+
and (transform.transforms[0].size == self.input_sizes[idx][-1])
|
90 |
+
and (transform.transforms[1].size == self.input_sizes[idx][-2:])
|
91 |
+
):
|
92 |
+
raise ValueError(f"Unexpected TIMM image transformation structure/sizes: `{transform}`")
|
93 |
+
|
94 |
+
# HF Image Processors *must* be JSON-serializable; as such, cannot have torchvision. as an attribute.
|
95 |
+
# => Instead, we're going to parse the transform and call "torchvision.transforms.functional" (`tvf`)
|
96 |
+
resize_t, crop_t, norm_t = transform.transforms[0], transform.transforms[1], transform.transforms[3]
|
97 |
+
self.tvf_resize_params.append(
|
98 |
+
{
|
99 |
+
"size": resize_t.size,
|
100 |
+
"interpolation": TVF.pil_modes_mapping[resize_t.interpolation],
|
101 |
+
"max_size": None,
|
102 |
+
"antialias": True,
|
103 |
+
}
|
104 |
+
)
|
105 |
+
self.tvf_crop_params.append({"output_size": crop_t.size})
|
106 |
+
self.tvf_normalize_params.append(
|
107 |
+
{
|
108 |
+
"mean": norm_t.mean.float().numpy().tolist(),
|
109 |
+
"std": norm_t.std.float().numpy().tolist(),
|
110 |
+
"inplace": False,
|
111 |
+
}
|
112 |
+
)
|
113 |
+
self.tvf_do_letterbox, self.tvf_letterbox_fill = False, None
|
114 |
+
|
115 |
+
# Handle Prismatic `image_resize_strategy`
|
116 |
+
if self.image_resize_strategy == "resize-naive":
|
117 |
+
self.tvf_resize_params[idx]["size"] = (resize_t.size, resize_t.size)
|
118 |
+
elif self.image_resize_strategy == "letterbox":
|
119 |
+
self.tvf_do_letterbox, self.tvf_letterbox_fill = True, tuple([int(x * 255) for x in self.means[idx]])
|
120 |
+
elif self.image_resize_strategy == "resize-crop":
|
121 |
+
pass
|
122 |
+
else:
|
123 |
+
raise ValueError(f"Image resize strategy `{self.image_resize_strategy}` is not supported!")
|
124 |
+
|
125 |
+
# Dispatch **kwargs to super()
|
126 |
+
super().__init__(**kwargs)
|
127 |
+
|
128 |
+
def apply_transform(self, img: Image.Image) -> torch.Tensor:
|
129 |
+
"""Apply `functional` variant of TIMM's Transform = Compose([Resize -> CenterCrop -> ToTensor -> Normalize])"""
|
130 |
+
if self.tvf_do_letterbox:
|
131 |
+
img = letterbox_pad_transform(img, self.tvf_letterbox_fill)
|
132 |
+
|
133 |
+
# [Contract] Fused Backbones expect "channel-stacked" inputs; we'll unpack on the model side!
|
134 |
+
imgs_t = []
|
135 |
+
for idx in range(len(self.input_sizes)):
|
136 |
+
img_idx = TVF.resize(img, **self.tvf_resize_params[idx])
|
137 |
+
img_idx = TVF.center_crop(img_idx, **self.tvf_crop_params[idx])
|
138 |
+
img_idx_t = TVF.to_tensor(img_idx)
|
139 |
+
img_idx_t = TVF.normalize(img_idx_t, **self.tvf_normalize_params[idx])
|
140 |
+
imgs_t.append(img_idx_t)
|
141 |
+
|
142 |
+
# [Contract] `imgs_t` is a list of Tensors of shape [3, input_size, input_size]; stack along dim = 0
|
143 |
+
img_t = torch.vstack(imgs_t)
|
144 |
+
|
145 |
+
return img_t
|
146 |
+
|
147 |
+
def preprocess(
|
148 |
+
self,
|
149 |
+
images: Union[Image.Image, List[Image.Image]],
|
150 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
151 |
+
**_: str,
|
152 |
+
) -> BatchFeature:
|
153 |
+
"""
|
154 |
+
Preprocess an image (or batch of images); note that unlike the `transformers :: BaseImageProcessor` we
|
155 |
+
explicitly only handle PIL.Image.Image instances for simplicity.
|
156 |
+
@param images: A (batch of) PIL.Image.Image instance(s) to preprocess.
|
157 |
+
@param return_tensors: BatchFeature default Tensor format (e.g., "pt" for torch); if None, returns np.ndarray
|
158 |
+
@return: Instance of `transformers :: BatchFeature` with a single key "pixel_values"
|
159 |
+
"""
|
160 |
+
if not isinstance(images, list):
|
161 |
+
images = [images]
|
162 |
+
|
163 |
+
# Apply `self.img_transform` to each image (will return list of torch.Tensors); stack into "batched" Tensor
|
164 |
+
pixel_values = torch.stack([self.apply_transform(img.convert("RGB")) for img in images])
|
165 |
+
|
166 |
+
# Return BatchFeature =>> note that for compatibility, constructor expects Dict[str, np.ndarray], so we convert
|
167 |
+
return BatchFeature(data={"pixel_values": pixel_values.float().numpy()}, tensor_type=return_tensors)
|
168 |
+
|
169 |
+
def __call__(self, images: Union[Image.Image, List[Image.Image]], **kwargs) -> BatchFeature:
|
170 |
+
return self.preprocess(images, **kwargs)
|
171 |
+
|
172 |
+
|
173 |
+
# === PrismaticProcessor =>> Wraps both ImageProcessor and Tokenizer ===
|
174 |
+
# =>> https://github.com/huggingface/transformers/blob/main/src/transformers/models/llava/processing_llava.py
|
175 |
+
class PrismaticProcessor(ProcessorMixin):
|
176 |
+
attributes: ClassVar[List[str]] = ["image_processor", "tokenizer"]
|
177 |
+
image_processor_class: str = "AutoImageProcessor"
|
178 |
+
tokenizer_class: str = "AutoTokenizer"
|
179 |
+
|
180 |
+
def __init__(
|
181 |
+
self,
|
182 |
+
image_processor: Optional[ImageProcessingMixin] = None,
|
183 |
+
tokenizer: Optional[PreTrainedTokenizerBase] = None,
|
184 |
+
) -> None:
|
185 |
+
super().__init__(image_processor, tokenizer)
|
186 |
+
|
187 |
+
def __call__(
|
188 |
+
self,
|
189 |
+
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]],
|
190 |
+
images: Union[Image.Image, List[Image.Image]],
|
191 |
+
padding: Union[bool, str, PaddingStrategy] = False,
|
192 |
+
truncation: Optional[Union[bool, str, TruncationStrategy]] = None,
|
193 |
+
max_length: Optional[int] = None,
|
194 |
+
return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH,
|
195 |
+
) -> BatchFeature:
|
196 |
+
"""
|
197 |
+
Preprocess a given (batch) of text/images for a Prismatic VLM; forwards text to the underlying LLM's tokenizer,
|
198 |
+
forwards images to PrismaticImageProcessor.
|
199 |
+
@param text: The (batch) of text to encode; must be a string or list of strings.
|
200 |
+
@param images: A (batch of) PIL.Image.Image instance(s) to preprocess.
|
201 |
+
@param padding: Sequence padding strategy (if multiple specified) in < True = "longest" | "max_length" | False >
|
202 |
+
@param truncation: Truncation strategy for the output sequences; requires `max_length` to be specified
|
203 |
+
@param max_length: Maximum length (in tokens) to truncate
|
204 |
+
@param return_tensors: Type of return tensors (usually "pt" or TensorType.PYTORCH)
|
205 |
+
@return: BatchFeature with keys for `input_ids`, `attention_mask` and `pixel_values`.
|
206 |
+
"""
|
207 |
+
pixel_values = self.image_processor(images, return_tensors=return_tensors)["pixel_values"]
|
208 |
+
text_inputs = self.tokenizer(
|
209 |
+
text, return_tensors=return_tensors, padding=padding, truncation=truncation, max_length=max_length
|
210 |
+
)
|
211 |
+
|
212 |
+
# [Validate] Need same number of images and text inputs!
|
213 |
+
if pixel_values.shape[0] != text_inputs.input_ids.shape[0]:
|
214 |
+
raise ValueError("Batch is malformed; expected same number of images and text inputs!")
|
215 |
+
|
216 |
+
return BatchFeature(data={**text_inputs, "pixel_values": pixel_values})
|
217 |
+
|
218 |
+
# === Tokenizer Dispatch Utilities =>> check `PreTrainedTokenizerBase` for documentation ===
|
219 |
+
def batch_decode(
|
220 |
+
self,
|
221 |
+
sequences: Union[List[int], List[List[int]], torch.Tensor, Any], # `Any` = np.ndarray | tf.Tensor
|
222 |
+
skip_special_tokens: bool = False,
|
223 |
+
clean_up_tokenization_spaces: Optional[bool] = None,
|
224 |
+
**kwargs: str,
|
225 |
+
) -> List[str]:
|
226 |
+
return self.tokenizer.batch_decode(
|
227 |
+
sequences=sequences,
|
228 |
+
skip_special_tokens=skip_special_tokens,
|
229 |
+
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
230 |
+
**kwargs,
|
231 |
+
)
|
232 |
+
|
233 |
+
def decode(
|
234 |
+
self,
|
235 |
+
token_ids: Union[int, List[int], torch.Tensor, Any], # `Any` = np.ndarray | tf.Tensor
|
236 |
+
skip_special_tokens: bool = False,
|
237 |
+
clean_up_tokenization_spaces: Optional[bool] = None,
|
238 |
+
**kwargs: str,
|
239 |
+
) -> str:
|
240 |
+
return self.tokenizer.decode(
|
241 |
+
token_ids=token_ids,
|
242 |
+
skip_special_tokens=skip_special_tokens,
|
243 |
+
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
244 |
+
**kwargs,
|
245 |
+
)
|
246 |
+
|
247 |
+
@property
|
248 |
+
def model_input_names(self) -> List[str]:
|
249 |
+
tokenizer_input_names = self.tokenizer.model_input_names
|
250 |
+
image_processor_input_names = self.image_processor.model_input_names
|
251 |
+
|
252 |
+
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
|
processor_config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"auto_map": {
|
3 |
+
"AutoProcessor": "processing_prismatic.PrismaticProcessor"
|
4 |
+
},
|
5 |
+
"processor_class": "PrismaticProcessor"
|
6 |
+
}
|
tokenizer_config.json
CHANGED
@@ -2057,6 +2057,9 @@
|
|
2057 |
"special": true
|
2058 |
}
|
2059 |
},
|
|
|
|
|
|
|
2060 |
"bos_token": "<|begin_of_text|>",
|
2061 |
"clean_up_tokenization_spaces": true,
|
2062 |
"eos_token": "<|end_of_text|>",
|
|
|
2057 |
"special": true
|
2058 |
}
|
2059 |
},
|
2060 |
+
"auto_map": {
|
2061 |
+
"AutoProcessor": "processing_prismatic.PrismaticProcessor"
|
2062 |
+
},
|
2063 |
"bos_token": "<|begin_of_text|>",
|
2064 |
"clean_up_tokenization_spaces": true,
|
2065 |
"eos_token": "<|end_of_text|>",
|