relik-ie commited on
Commit
1547fb1
·
verified ·
1 Parent(s): 1c7b3c4

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +180 -3
README.md CHANGED
@@ -1,3 +1,180 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ license: apache-2.0
5
+ ---
6
+
7
+ <div align="center">
8
+ <img src="https://github.com/SapienzaNLP/relik/blob/main/relik.png?raw=true" height="150">
9
+ <img src="https://github.com/SapienzaNLP/relik/blob/main/Sapienza_Babelscape.png?raw=true" height="50">
10
+ </div>
11
+
12
+ <div align="center">
13
+ <h1>Retrieve, Read and LinK: Fast and Accurate Entity Linking and Relation Extraction on an Academic Budget</h1>
14
+ </div>
15
+
16
+ <div style="display:flex; justify-content: center; align-items: center; flex-direction: row;">
17
+ <a href="https://2024.aclweb.org/"><img src="http://img.shields.io/badge/ACL-2024-4b44ce.svg"></a> &nbsp; &nbsp;
18
+ <a href="https://aclanthology.org/"><img src="http://img.shields.io/badge/paper-ACL--anthology-B31B1B.svg"></a> &nbsp; &nbsp;
19
+ <a href="https://arxiv.org/abs/placeholder"><img src="https://img.shields.io/badge/arXiv-placeholder-b31b1b.svg"></a>
20
+ </div>
21
+ <div style="display:flex; justify-content: center; align-items: center; flex-direction: row;">
22
+ <a href="https://huggingface.co/collections/sapienzanlp/relik-retrieve-read-and-link-665d9e4a5c3ecba98c1bef19"><img src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Collection-FCD21D"></a> &nbsp; &nbsp;
23
+ <a href="https://github.com/SapienzaNLP/relik"><img src="https://img.shields.io/badge/GitHub-Repo-121013?logo=github&logoColor=white"></a> &nbsp; &nbsp;
24
+ <a href="https://github.com/SapienzaNLP/relik/releases"><img src="https://img.shields.io/github/v/release/SapienzaNLP/relik"></a>
25
+ </div>
26
+
27
+ This card is for a more robustly trained EL model. While it performs slightly worse on benchmarks, it should be less sensible to capitalization and such. Be aware that results reported in this model card are for sapienzanlp/relik-entity-linking-large
28
+
29
+ A blazing fast and lightweight Information Extraction model for **Entity Linking** and **Relation Extraction**.
30
+
31
+ ## 🛠️ Installation
32
+
33
+ Installation from PyPI
34
+
35
+ ```bash
36
+ pip install relik
37
+ ```
38
+
39
+ <details>
40
+ <summary>Other installation options</summary>
41
+
42
+ #### Install with optional dependencies
43
+
44
+ Install with all the optional dependencies.
45
+
46
+ ```bash
47
+ pip install relik[all]
48
+ ```
49
+
50
+ Install with optional dependencies for training and evaluation.
51
+
52
+ ```bash
53
+ pip install relik[train]
54
+ ```
55
+
56
+ Install with optional dependencies for [FAISS](https://github.com/facebookresearch/faiss)
57
+
58
+ FAISS PyPI package is only available for CPU. For GPU, install it from source or use the conda package.
59
+
60
+ For CPU:
61
+
62
+ ```bash
63
+ pip install relik[faiss]
64
+ ```
65
+
66
+ For GPU:
67
+
68
+ ```bash
69
+ conda create -n relik python=3.10
70
+ conda activate relik
71
+
72
+ # install pytorch
73
+ conda install -y pytorch=2.1.0 pytorch-cuda=12.1 -c pytorch -c nvidia
74
+
75
+ # GPU
76
+ conda install -y -c pytorch -c nvidia faiss-gpu=1.8.0
77
+ # or GPU with NVIDIA RAFT
78
+ conda install -y -c pytorch -c nvidia -c rapidsai -c conda-forge faiss-gpu-raft=1.8.0
79
+
80
+ pip install relik
81
+ ```
82
+
83
+ Install with optional dependencies for serving the models with
84
+ [FastAPI](https://fastapi.tiangolo.com/) and [Ray](https://docs.ray.io/en/latest/serve/quickstart.html).
85
+
86
+ ```bash
87
+ pip install relik[serve]
88
+ ```
89
+
90
+ #### Installation from source
91
+
92
+ ```bash
93
+ git clone https://github.com/SapienzaNLP/relik.git
94
+ cd relik
95
+ pip install -e .[all]
96
+ ```
97
+
98
+ </details>
99
+
100
+ ## 🚀 Quick Start
101
+
102
+ [//]: # (Write a short description of the model and how to use it with the `from_pretrained` method.)
103
+
104
+ ReLiK is a lightweight and fast model for **Entity Linking** and **Relation Extraction**.
105
+ It is composed of two main components: a retriever and a reader.
106
+ The retriever is responsible for retrieving relevant documents from a large collection,
107
+ while the reader is responsible for extracting entities and relations from the retrieved documents.
108
+ ReLiK can be used with the `from_pretrained` method to load a pre-trained pipeline.
109
+
110
+ Here is an example of how to use ReLiK for **Entity Linking**:
111
+
112
+ ```python
113
+ from relik import Relik
114
+ from relik.inference.data.objects import RelikOutput
115
+
116
+ relik = Relik.from_pretrained("sapienzanlp/relik-entity-linking-large")
117
+ relik_out: RelikOutput = relik("Michael Jordan was one of the best players in the NBA.")
118
+ ```
119
+
120
+ RelikOutput(
121
+ text="Michael Jordan was one of the best players in the NBA.",
122
+ tokens=['Michael', 'Jordan', 'was', 'one', 'of', 'the', 'best', 'players', 'in', 'the', 'NBA', '.'],
123
+ id=0,
124
+ spans=[
125
+ Span(start=0, end=14, label="Michael Jordan", text="Michael Jordan"),
126
+ Span(start=50, end=53, label="National Basketball Association", text="NBA"),
127
+ ],
128
+ triples=[],
129
+ candidates=Candidates(
130
+ span=[
131
+ [
132
+ [
133
+ {"text": "Michael Jordan", "id": 4484083},
134
+ {"text": "National Basketball Association", "id": 5209815},
135
+ {"text": "Walter Jordan", "id": 2340190},
136
+ {"text": "Jordan", "id": 3486773},
137
+ {"text": "50 Greatest Players in NBA History", "id": 1742909},
138
+ ...
139
+ ]
140
+ ]
141
+ ]
142
+ ),
143
+ )
144
+
145
+ ## 📊 Performance
146
+
147
+ We evaluate the performance of ReLiK on Entity Linking using [GERBIL](http://gerbil-qa.aksw.org/gerbil/). The following table shows the results (InKB Micro F1) of ReLiK Large and Base:
148
+
149
+ | Model | AIDA | MSNBC | Der | K50 | R128 | R500 | O15 | O16 | Tot | OOD | AIT (m:s) |
150
+ |------------------------------------------|------|-------|------|------|------|------|------|------|------|------|------------|
151
+ | GENRE | 83.7 | 73.7 | 54.1 | 60.7 | 46.7 | 40.3 | 56.1 | 50.0 | 58.2 | 54.5 | 38:00 |
152
+ | EntQA | 85.8 | 72.1 | 52.9 | 64.5 | **54.1** | 41.9 | 61.1 | 51.3 | 60.5 | 56.4 | 20:00 |
153
+ | [ReLiK<sub>Base<sub>](https://huggingface.co/sapienzanlp/relik-entity-linking-base) | 85.3 | 72.3 | 55.6 | 68.0 | 48.1 | 41.6 | 62.5 | 52.3 | 60.7 | 57.2 | 00:29 |
154
+ | ➡️ [ReLiK<sub>Large<sub>](https://huggingface.co/sapienzanlp/relik-entity-linking-large) | **86.4** | **75.0** | **56.3** | **72.8** | 51.7 | **43.0** | **65.1** | **57.2** | **63.4** | **60.2** | 01:46 |
155
+
156
+ Comparison systems' evaluation (InKB Micro F1) on the *in-domain* AIDA test set and *out-of-domain* MSNBC (MSN), Derczynski (Der), KORE50 (K50), N3-Reuters-128 (R128),
157
+ N3-RSS-500 (R500), OKE-15 (O15), and OKE-16 (O16) test sets. **Bold** indicates the best model.
158
+ GENRE uses mention dictionaries.
159
+ The AIT column shows the time in minutes and seconds (m:s) that the systems need to process the whole AIDA test set using an NVIDIA RTX 4090,
160
+ except for EntQA which does not fit in 24GB of RAM and for which an A100 is used.
161
+
162
+ ## 🤖 Models
163
+
164
+ Models can be found on [🤗 Hugging Face](https://huggingface.co/collections/sapienzanlp/relik-retrieve-read-and-link-665d9e4a5c3ecba98c1bef19).
165
+
166
+ ## 💽 Cite this work
167
+
168
+ If you use any part of this work, please consider citing the paper as follows:
169
+
170
+ ```bibtex
171
+ @inproceedings{orlando-etal-2024-relik,
172
+ title = "Retrieve, Read and LinK: Fast and Accurate Entity Linking and Relation Extraction on an Academic Budget",
173
+ author = "Orlando, Riccardo and Huguet Cabot, Pere-Llu{\'\i}s and Barba, Edoardo and Navigli, Roberto",
174
+ booktitle = "Findings of the Association for Computational Linguistics: ACL 2024",
175
+ month = aug,
176
+ year = "2024",
177
+ address = "Bangkok, Thailand",
178
+ publisher = "Association for Computational Linguistics",
179
+ }
180
+ ```