Upload GPTRefactForCausalLM
Browse files- config.json +31 -0
- configuration_gpt_refact.py +61 -0
- generation_config.json +7 -0
- modeling_gpt_refact.py +586 -0
- pytorch_model.bin +3 -0
config.json
ADDED
|
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"GPTRefactForCausalLM"
|
| 4 |
+
],
|
| 5 |
+
"attention_softmax_in_fp32": false,
|
| 6 |
+
"attn_pdrop": 0.1,
|
| 7 |
+
"auto_map": {
|
| 8 |
+
"AutoConfig": "configuration_gpt_refact.GPTRefactConfig",
|
| 9 |
+
"AutoModelForCausalLM": "modeling_gpt_refact.GPTRefactForCausalLM"
|
| 10 |
+
},
|
| 11 |
+
"bos_token_id": -1,
|
| 12 |
+
"do_sample": true,
|
| 13 |
+
"embd_pdrop": 0.1,
|
| 14 |
+
"eos_token_id": 0,
|
| 15 |
+
"initializer_range": 0.02,
|
| 16 |
+
"layer_norm_epsilon": 1e-05,
|
| 17 |
+
"model_type": "gpt_refact",
|
| 18 |
+
"multi_query": true,
|
| 19 |
+
"n_embd": 2048,
|
| 20 |
+
"n_head": 32,
|
| 21 |
+
"n_inner": null,
|
| 22 |
+
"n_layer": 32,
|
| 23 |
+
"n_positions": 4096,
|
| 24 |
+
"resid_pdrop": 0.1,
|
| 25 |
+
"scale_attention_softmax_in_fp32": false,
|
| 26 |
+
"scale_attn_weights": true,
|
| 27 |
+
"torch_dtype": "float32",
|
| 28 |
+
"transformers_version": "4.31.0",
|
| 29 |
+
"use_cache": true,
|
| 30 |
+
"vocab_size": 49216
|
| 31 |
+
}
|
configuration_gpt_refact.py
ADDED
|
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers.configuration_utils import PretrainedConfig
|
| 2 |
+
from transformers.utils import logging
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
logger = logging.get_logger(__name__)
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
class GPTRefactConfig(PretrainedConfig):
|
| 9 |
+
model_type = "gpt_refact"
|
| 10 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
| 11 |
+
attribute_map = {
|
| 12 |
+
"hidden_size": "n_embd",
|
| 13 |
+
"max_position_embeddings": "n_positions",
|
| 14 |
+
"num_attention_heads": "n_head",
|
| 15 |
+
"num_hidden_layers": "n_layer",
|
| 16 |
+
}
|
| 17 |
+
|
| 18 |
+
def __init__(
|
| 19 |
+
self,
|
| 20 |
+
vocab_size: int = 49216,
|
| 21 |
+
n_positions: int = 4096,
|
| 22 |
+
n_embd: int = 1024,
|
| 23 |
+
n_layer: int = 32,
|
| 24 |
+
n_head: int = 64,
|
| 25 |
+
max_position_embeddings: int = 4096,
|
| 26 |
+
multi_query: bool = True,
|
| 27 |
+
layer_norm_epsilon=1e-5,
|
| 28 |
+
initializer_range=0.02,
|
| 29 |
+
scale_attn_weights=True,
|
| 30 |
+
use_cache=True,
|
| 31 |
+
bos_token_id=-1,
|
| 32 |
+
eos_token_id=0,
|
| 33 |
+
attention_softmax_in_fp32=False,
|
| 34 |
+
scale_attention_softmax_in_fp32=False,
|
| 35 |
+
resid_pdrop=0.1,
|
| 36 |
+
embd_pdrop=0.1,
|
| 37 |
+
attn_pdrop=0.1,
|
| 38 |
+
**kwargs,
|
| 39 |
+
):
|
| 40 |
+
self.vocab_size = vocab_size
|
| 41 |
+
self.n_positions = n_positions
|
| 42 |
+
self.n_embd = n_embd
|
| 43 |
+
self.n_layer = n_layer
|
| 44 |
+
self.n_head = n_head
|
| 45 |
+
self.n_inner = None
|
| 46 |
+
self.resid_pdrop = resid_pdrop
|
| 47 |
+
self.embd_pdrop = embd_pdrop
|
| 48 |
+
self.attn_pdrop = attn_pdrop
|
| 49 |
+
self.layer_norm_epsilon = layer_norm_epsilon
|
| 50 |
+
self.initializer_range = initializer_range
|
| 51 |
+
self.scale_attn_weights = scale_attn_weights
|
| 52 |
+
self.use_cache = use_cache
|
| 53 |
+
self.attention_softmax_in_fp32 = attention_softmax_in_fp32
|
| 54 |
+
self.scale_attention_softmax_in_fp32 = scale_attention_softmax_in_fp32
|
| 55 |
+
|
| 56 |
+
self.bos_token_id = bos_token_id
|
| 57 |
+
self.eos_token_id = eos_token_id
|
| 58 |
+
|
| 59 |
+
self.multi_query = multi_query
|
| 60 |
+
self.max_position_embeddings = max_position_embeddings
|
| 61 |
+
super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
|
generation_config.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_from_model_config": true,
|
| 3 |
+
"bos_token_id": -1,
|
| 4 |
+
"do_sample": true,
|
| 5 |
+
"eos_token_id": 0,
|
| 6 |
+
"transformers_version": "4.31.0"
|
| 7 |
+
}
|
modeling_gpt_refact.py
ADDED
|
@@ -0,0 +1,586 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import math
|
| 2 |
+
import torch
|
| 3 |
+
import torch.nn.functional as F
|
| 4 |
+
import torch.utils.checkpoint
|
| 5 |
+
from torch import nn
|
| 6 |
+
from torch.nn import CrossEntropyLoss
|
| 7 |
+
from transformers.modeling_outputs import (
|
| 8 |
+
BaseModelOutputWithPastAndCrossAttentions,
|
| 9 |
+
CausalLMOutputWithCrossAttentions,
|
| 10 |
+
)
|
| 11 |
+
from transformers.modeling_utils import PreTrainedModel
|
| 12 |
+
from transformers.utils import (
|
| 13 |
+
logging,
|
| 14 |
+
)
|
| 15 |
+
from typing import List, Optional, Tuple, Union
|
| 16 |
+
|
| 17 |
+
from .configuration_gpt_refact import GPTRefactConfig
|
| 18 |
+
|
| 19 |
+
logger = logging.get_logger(__name__)
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
@torch.jit.script
|
| 23 |
+
def upcast_masked_softmax(
|
| 24 |
+
x: torch.Tensor, mask: torch.Tensor, mask_value: torch.Tensor, scale: float, softmax_dtype: torch.dtype
|
| 25 |
+
):
|
| 26 |
+
input_dtype = x.dtype
|
| 27 |
+
x = x.to(softmax_dtype) * scale
|
| 28 |
+
x = torch.where(mask, x, mask_value)
|
| 29 |
+
x = torch.nn.functional.softmax(x, dim=-1).to(input_dtype)
|
| 30 |
+
return x
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
@torch.jit.script
|
| 34 |
+
def upcast_softmax(x: torch.Tensor, scale: float, softmax_dtype: torch.dtype):
|
| 35 |
+
input_dtype = x.dtype
|
| 36 |
+
x = x.to(softmax_dtype) * scale
|
| 37 |
+
x = torch.nn.functional.softmax(x, dim=-1).to(input_dtype)
|
| 38 |
+
return x
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
@torch.jit.script
|
| 42 |
+
def masked_softmax(x: torch.Tensor, mask: torch.Tensor, mask_value: torch.Tensor):
|
| 43 |
+
x = torch.where(mask, x, mask_value)
|
| 44 |
+
x = torch.nn.functional.softmax(x, dim=-1)
|
| 45 |
+
return x
|
| 46 |
+
|
| 47 |
+
@torch.jit.script
|
| 48 |
+
def _get_slopes(attn_heads: int, dev: torch.device) -> torch.Tensor:
|
| 49 |
+
"""
|
| 50 |
+
## Get head-specific slope $m$ for each head
|
| 51 |
+
* `n_heads` is the number of heads in the attention layer $n$
|
| 52 |
+
The slope for first head is
|
| 53 |
+
$$\frac{1}{2^{\frac{8}{n}}} = 2^{-\frac{8}{n}}$$
|
| 54 |
+
The slopes for the rest of the heads are in a geometric series with a ratio same as above.
|
| 55 |
+
For instance when the number of heads is $8$ the slopes are
|
| 56 |
+
$$\frac{1}{2^1}, \frac{1}{2^2}, \dots, \frac{1}{2^8}$$
|
| 57 |
+
"""
|
| 58 |
+
|
| 59 |
+
# Get the closest power of 2 to `n_heads`.
|
| 60 |
+
# If `n_heads` is not a power of 2, then we first calculate slopes to the closest (smaller) power of 2,
|
| 61 |
+
# and then add the remaining slopes.
|
| 62 |
+
n = 2 ** math.floor(math.log(attn_heads, 2))
|
| 63 |
+
# $2^{-\frac{8}{n}}$
|
| 64 |
+
m_0 = 2.0 ** (-8.0 / n)
|
| 65 |
+
# $2^{-1\frac{8}{n}}, 2^{-2 \frac{8}{n}}, 2^{-3 \frac{8}{n}}, \dots$
|
| 66 |
+
m = torch.pow(m_0, torch.arange(1, 1 + n, device=dev))
|
| 67 |
+
|
| 68 |
+
# If `n_heads` is not a power of 2, then we add the remaining slopes.
|
| 69 |
+
# We calculate the remaining slopes for $n * 2$ (avoiding slopes added previously).
|
| 70 |
+
# And pick the slopes upto `n_heads`.
|
| 71 |
+
if n < attn_heads:
|
| 72 |
+
# $2^{-\frac{8}{2n}}$
|
| 73 |
+
m_hat_0 = 2.0 ** (-4.0 / n)
|
| 74 |
+
# $2^{-1\frac{8}{2n}}, 2^{-3 \frac{8}{2n}}, 2^{-5 \frac{8}{2n}}, \dots$
|
| 75 |
+
# Note that we take steps by $2$ to avoid slopes added previously.
|
| 76 |
+
m_hat = torch.pow(m_hat_0, torch.arange(1, 1 + 2 * (attn_heads - n), 2, device=dev))
|
| 77 |
+
# Concatenate the slopes with the remaining slopes.
|
| 78 |
+
m = torch.cat([m, m_hat])
|
| 79 |
+
|
| 80 |
+
return m
|
| 81 |
+
|
| 82 |
+
@torch.jit.script
|
| 83 |
+
def get_alibi_biases(
|
| 84 |
+
B: int,
|
| 85 |
+
T: int,
|
| 86 |
+
attn_heads: int,
|
| 87 |
+
dev: torch.device,
|
| 88 |
+
dtype: torch.dtype,
|
| 89 |
+
causal: bool = True) -> torch.Tensor:
|
| 90 |
+
"""
|
| 91 |
+
## Calculate the attention biases matrix
|
| 92 |
+
* `n_heads` is the number of heads in the attention layer
|
| 93 |
+
* `mask` is the attention mask of shape `[seq_len_q, seq_len_k]`
|
| 94 |
+
This returns a matrix of shape `[seq_len_q, seq_len_k, n_heads, ]` with ALiBi attention biases.
|
| 95 |
+
"""
|
| 96 |
+
|
| 97 |
+
# Get slopes $m$ for each head
|
| 98 |
+
if causal:
|
| 99 |
+
mask = (torch.triu(torch.ones((T, T), device=dev)) == 1).transpose(0, 1)
|
| 100 |
+
else:
|
| 101 |
+
mask = torch.ones((T, T), device=dev, dtype=torch.bool)
|
| 102 |
+
|
| 103 |
+
m = _get_slopes(attn_heads, dev)
|
| 104 |
+
|
| 105 |
+
# Calculate distances $[0, 1, \dots, N]$
|
| 106 |
+
# Here we calculate the distances using the mask.
|
| 107 |
+
#
|
| 108 |
+
# Since it's causal mask we can just use $[0, 1, \dots, N]$ too.
|
| 109 |
+
# `distance = torch.arange(mask.shape[1], dtype=torch.long, device=mask.device)[None, :]`
|
| 110 |
+
distance = mask.cumsum(dim=-1)
|
| 111 |
+
|
| 112 |
+
# Multiply them pair-wise to get the AliBi bias matrix
|
| 113 |
+
biases = distance[:, :, None] * m[None, None, :]
|
| 114 |
+
biases = biases.permute(2, 0, 1)[None, :, :T, :T]
|
| 115 |
+
biases = biases.repeat(B, 1, 1, 1)
|
| 116 |
+
return biases.to(dtype).contiguous()
|
| 117 |
+
|
| 118 |
+
|
| 119 |
+
class Attention(nn.Module):
|
| 120 |
+
def __init__(self, config, layer_idx=None):
|
| 121 |
+
super().__init__()
|
| 122 |
+
self.mask_value = None
|
| 123 |
+
|
| 124 |
+
self.embed_dim = config.hidden_size
|
| 125 |
+
self.num_heads = config.num_attention_heads
|
| 126 |
+
self.head_dim = self.embed_dim // self.num_heads
|
| 127 |
+
self.kv_attn_heads = 1
|
| 128 |
+
|
| 129 |
+
self.scale = self.head_dim ** -0.5
|
| 130 |
+
|
| 131 |
+
if self.head_dim * self.num_heads != self.embed_dim:
|
| 132 |
+
raise ValueError(
|
| 133 |
+
f"`embed_dim` must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
|
| 134 |
+
f" {self.num_heads})."
|
| 135 |
+
)
|
| 136 |
+
|
| 137 |
+
self.layer_idx = layer_idx
|
| 138 |
+
self.attention_softmax_in_fp32 = config.attention_softmax_in_fp32
|
| 139 |
+
self.scale_attention_softmax_in_fp32 = (
|
| 140 |
+
config.scale_attention_softmax_in_fp32 and config.attention_softmax_in_fp32
|
| 141 |
+
)
|
| 142 |
+
|
| 143 |
+
self.q = nn.Linear(self.embed_dim, self.embed_dim, bias=False)
|
| 144 |
+
self.k = nn.Linear(self.embed_dim, self.head_dim, bias=False)
|
| 145 |
+
self.v = nn.Linear(self.embed_dim, self.head_dim, bias=False)
|
| 146 |
+
self.c_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=False)
|
| 147 |
+
|
| 148 |
+
def _attn(self, query, key, value, attention_mask=None, alibi=None):
|
| 149 |
+
dtype = query.dtype
|
| 150 |
+
softmax_dtype = torch.float32 if self.attention_softmax_in_fp32 else dtype
|
| 151 |
+
upcast = dtype != softmax_dtype
|
| 152 |
+
unscale = self.layer_idx + 1 if self.scale_attention_softmax_in_fp32 and upcast else 1
|
| 153 |
+
|
| 154 |
+
attn_weights = alibi + torch.matmul(query * self.scale, key)
|
| 155 |
+
|
| 156 |
+
if upcast:
|
| 157 |
+
if attention_mask is None:
|
| 158 |
+
attn_weights = upcast_softmax(attn_weights, unscale, softmax_dtype)
|
| 159 |
+
else:
|
| 160 |
+
mask_value = self._get_mask_value(attn_weights.device, softmax_dtype)
|
| 161 |
+
attn_weights = upcast_masked_softmax(attn_weights, attention_mask, mask_value, unscale, softmax_dtype)
|
| 162 |
+
else:
|
| 163 |
+
if attention_mask is not None:
|
| 164 |
+
attn_weights = torch.masked_fill(attn_weights, attention_mask, -10000)
|
| 165 |
+
|
| 166 |
+
attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1)
|
| 167 |
+
|
| 168 |
+
attn_output = torch.matmul(attn_weights, value)
|
| 169 |
+
|
| 170 |
+
return attn_output, attn_weights
|
| 171 |
+
|
| 172 |
+
def _split_heads(self, tensor):
|
| 173 |
+
new_shape = tensor.shape[:-1] + (self.num_heads, self.head_dim)
|
| 174 |
+
tensor = tensor.view(new_shape)
|
| 175 |
+
return tensor.permute(0, 2, 1, 3)
|
| 176 |
+
|
| 177 |
+
def forward(
|
| 178 |
+
self,
|
| 179 |
+
hidden_states: torch.Tensor,
|
| 180 |
+
layer_past: Optional[torch.Tensor] = None,
|
| 181 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 182 |
+
alibi: Optional[torch.Tensor] = None,
|
| 183 |
+
use_cache: Optional[bool] = False,
|
| 184 |
+
output_attentions: Optional[bool] = False,
|
| 185 |
+
) -> Union[
|
| 186 |
+
Tuple[torch.Tensor, Optional[torch.Tensor]],
|
| 187 |
+
Tuple[torch.Tensor, Optional[torch.Tensor], Tuple[torch.Tensor, ...]],
|
| 188 |
+
]:
|
| 189 |
+
b, t, _ = hidden_states.shape
|
| 190 |
+
query = self.q(hidden_states)
|
| 191 |
+
key = self.k(hidden_states)
|
| 192 |
+
value = self.v(hidden_states)
|
| 193 |
+
query = self._split_heads(query)
|
| 194 |
+
key = key.view(b, t, self.kv_attn_heads, self.head_dim).permute(0, 2, 1, 3)
|
| 195 |
+
value = value.view(b, t, self.kv_attn_heads, self.head_dim).permute(0, 2, 1, 3)
|
| 196 |
+
|
| 197 |
+
if layer_past is not None:
|
| 198 |
+
past_key, past_value = layer_past
|
| 199 |
+
key = torch.cat((past_key, key), dim=-2)
|
| 200 |
+
value = torch.cat((past_value, value), dim=-2)
|
| 201 |
+
|
| 202 |
+
if use_cache is True:
|
| 203 |
+
present = (key, value)
|
| 204 |
+
else:
|
| 205 |
+
present = None
|
| 206 |
+
|
| 207 |
+
attn_output, attn_weights = self._attn(query, key.transpose(-1, -2), value, attention_mask, alibi)
|
| 208 |
+
|
| 209 |
+
attn_output = attn_output.transpose(1, 2).reshape(hidden_states.shape)
|
| 210 |
+
attn_output = self.c_proj(attn_output)
|
| 211 |
+
|
| 212 |
+
outputs = (attn_output, present)
|
| 213 |
+
if output_attentions:
|
| 214 |
+
outputs += (attn_weights,)
|
| 215 |
+
|
| 216 |
+
return outputs # a, present, (attentions)
|
| 217 |
+
|
| 218 |
+
|
| 219 |
+
class MLP(nn.Module):
|
| 220 |
+
def __init__(self, intermediate_size, config, multiple_of: int = 256):
|
| 221 |
+
super().__init__()
|
| 222 |
+
embed_dim = config.hidden_size
|
| 223 |
+
hidden_dim = intermediate_size
|
| 224 |
+
hidden_dim = int(2 * hidden_dim / 3)
|
| 225 |
+
hidden_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
|
| 226 |
+
self.linear_1 = nn.Linear(embed_dim, hidden_dim, bias=False)
|
| 227 |
+
self.linear_3 = nn.Linear(embed_dim, hidden_dim, bias=False)
|
| 228 |
+
self.c_proj = nn.Linear(hidden_dim, embed_dim, bias=False)
|
| 229 |
+
|
| 230 |
+
def forward(self, x: Optional[Tuple[torch.Tensor]]) -> torch.Tensor:
|
| 231 |
+
x1 = F.silu(self.linear_1(x))
|
| 232 |
+
x2 = self.linear_3(x)
|
| 233 |
+
x = self.c_proj(x1 * x2)
|
| 234 |
+
return x
|
| 235 |
+
|
| 236 |
+
|
| 237 |
+
class LayerNormNoBias(nn.Module):
|
| 238 |
+
|
| 239 |
+
def __init__(self, shape: int, eps: float = 1e-5):
|
| 240 |
+
super().__init__()
|
| 241 |
+
self.shape = (shape,)
|
| 242 |
+
self.eps = eps
|
| 243 |
+
self.weight = nn.Parameter(torch.empty(self.shape))
|
| 244 |
+
|
| 245 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 246 |
+
return F.layer_norm(x, self.shape, self.weight, None, self.eps)
|
| 247 |
+
|
| 248 |
+
|
| 249 |
+
class GPTRefactBlock(nn.Module):
|
| 250 |
+
def __init__(self, config, layer_idx=None):
|
| 251 |
+
super().__init__()
|
| 252 |
+
hidden_size = config.hidden_size
|
| 253 |
+
self.inner_dim = config.n_inner if config.n_inner is not None else 4 * hidden_size
|
| 254 |
+
|
| 255 |
+
self.ln_1 = LayerNormNoBias(hidden_size, eps=config.layer_norm_epsilon)
|
| 256 |
+
self.attn = Attention(config, layer_idx=layer_idx)
|
| 257 |
+
self.ln_2 = LayerNormNoBias(hidden_size, eps=config.layer_norm_epsilon)
|
| 258 |
+
|
| 259 |
+
self.mlp = MLP(self.inner_dim, config)
|
| 260 |
+
|
| 261 |
+
def forward(
|
| 262 |
+
self,
|
| 263 |
+
hidden_states: Optional[Tuple[torch.Tensor]],
|
| 264 |
+
layer_past: Optional[torch.Tensor] = None,
|
| 265 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 266 |
+
alibi: Optional[torch.Tensor] = None,
|
| 267 |
+
use_cache: Optional[bool] = False,
|
| 268 |
+
output_attentions: Optional[bool] = False,
|
| 269 |
+
) -> Union[
|
| 270 |
+
Tuple[torch.Tensor], Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor, torch.Tensor, torch.Tensor]
|
| 271 |
+
]:
|
| 272 |
+
hidden_states_norm = self.ln_1(hidden_states)
|
| 273 |
+
attn_outputs = self.attn(
|
| 274 |
+
hidden_states_norm,
|
| 275 |
+
layer_past=layer_past,
|
| 276 |
+
attention_mask=attention_mask,
|
| 277 |
+
alibi=alibi,
|
| 278 |
+
use_cache=use_cache,
|
| 279 |
+
output_attentions=output_attentions,
|
| 280 |
+
)
|
| 281 |
+
attn_output = attn_outputs[0] # output_attn: a, present, (attentions)
|
| 282 |
+
outputs = attn_outputs[1:]
|
| 283 |
+
# residual connection
|
| 284 |
+
mix = attn_output + hidden_states
|
| 285 |
+
|
| 286 |
+
norm_mix = self.ln_2(mix)
|
| 287 |
+
feed_forward_hidden_states = self.mlp(norm_mix)
|
| 288 |
+
# residual connection
|
| 289 |
+
hidden_states = mix + feed_forward_hidden_states
|
| 290 |
+
|
| 291 |
+
if use_cache:
|
| 292 |
+
outputs = (hidden_states,) + outputs
|
| 293 |
+
else:
|
| 294 |
+
outputs = (hidden_states,) + outputs[1:]
|
| 295 |
+
|
| 296 |
+
return outputs # hidden_states, present, (attentions, cross_attentions)
|
| 297 |
+
|
| 298 |
+
|
| 299 |
+
class GPTRefactPreTrainedModel(PreTrainedModel):
|
| 300 |
+
config_class = GPTRefactConfig
|
| 301 |
+
base_model_prefix = "transformer"
|
| 302 |
+
supports_gradient_checkpointing = True
|
| 303 |
+
_no_split_modules = ["GPTRefactBlock"]
|
| 304 |
+
_skip_keys_device_placement = "past_key_values"
|
| 305 |
+
|
| 306 |
+
def __init__(self, *inputs, **kwargs):
|
| 307 |
+
super().__init__(*inputs, **kwargs)
|
| 308 |
+
|
| 309 |
+
def _init_weights(self, module):
|
| 310 |
+
if isinstance(module, (MLP, Attention)):
|
| 311 |
+
# Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme:
|
| 312 |
+
# > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale
|
| 313 |
+
# > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers.
|
| 314 |
+
# > -- GPT-2 :: https://openai.com/blog/better-language-models/
|
| 315 |
+
#
|
| 316 |
+
# Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
|
| 317 |
+
module.c_proj.weight.data.normal_(
|
| 318 |
+
mean=0.0, std=(self.config.initializer_range / math.sqrt(2 * self.config.n_layer))
|
| 319 |
+
)
|
| 320 |
+
module.c_proj._is_hf_initialized = True
|
| 321 |
+
elif isinstance(module, nn.Linear):
|
| 322 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
| 323 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
| 324 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
| 325 |
+
if module.bias is not None:
|
| 326 |
+
module.bias.data.zero_()
|
| 327 |
+
elif isinstance(module, nn.Embedding):
|
| 328 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
| 329 |
+
if module.padding_idx is not None:
|
| 330 |
+
module.weight.data[module.padding_idx].zero_()
|
| 331 |
+
elif isinstance(module, LayerNormNoBias):
|
| 332 |
+
module.weight.data.fill_(1.0)
|
| 333 |
+
|
| 334 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
| 335 |
+
if isinstance(module, GPTRefactModel):
|
| 336 |
+
module.gradient_checkpointing = value
|
| 337 |
+
|
| 338 |
+
|
| 339 |
+
class GPTRefactModel(GPTRefactPreTrainedModel):
|
| 340 |
+
def __init__(self, config):
|
| 341 |
+
super().__init__(config)
|
| 342 |
+
self.embed_dim = config.hidden_size
|
| 343 |
+
self.num_heads = config.num_attention_heads
|
| 344 |
+
self.multi_query = config.multi_query
|
| 345 |
+
self.wte = nn.Embedding(config.vocab_size, self.embed_dim)
|
| 346 |
+
|
| 347 |
+
self.h = nn.ModuleList([GPTRefactBlock(config, layer_idx=i) for i in range(config.num_hidden_layers)])
|
| 348 |
+
|
| 349 |
+
self.max_positions = config.max_position_embeddings
|
| 350 |
+
self.register_buffer(
|
| 351 |
+
"bias", torch.tril(torch.ones((self.max_positions, self.max_positions), dtype=torch.bool)),
|
| 352 |
+
persistent=False
|
| 353 |
+
)
|
| 354 |
+
|
| 355 |
+
self.gradient_checkpointing = False
|
| 356 |
+
|
| 357 |
+
# Initialize weights and apply final processing
|
| 358 |
+
self.post_init()
|
| 359 |
+
|
| 360 |
+
@staticmethod
|
| 361 |
+
def _make_mask(seq_len: int, past_key_values_length: int):
|
| 362 |
+
# prompt
|
| 363 |
+
if past_key_values_length == 0:
|
| 364 |
+
mask = torch.ones((seq_len, seq_len + past_key_values_length), dtype=torch.bool)
|
| 365 |
+
mask = torch.triu(mask, 1)
|
| 366 |
+
else:
|
| 367 |
+
mask = torch.zeros((seq_len, seq_len + past_key_values_length), dtype=torch.bool)
|
| 368 |
+
return mask
|
| 369 |
+
|
| 370 |
+
def forward(
|
| 371 |
+
self,
|
| 372 |
+
input_ids: Optional[torch.Tensor] = None,
|
| 373 |
+
past_key_values: Optional[List[torch.Tensor]] = None,
|
| 374 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 375 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
| 376 |
+
use_cache: Optional[bool] = None,
|
| 377 |
+
output_attentions: Optional[bool] = None,
|
| 378 |
+
output_hidden_states: Optional[bool] = None,
|
| 379 |
+
return_dict: Optional[bool] = None,
|
| 380 |
+
) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]:
|
| 381 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 382 |
+
output_hidden_states = (
|
| 383 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 384 |
+
)
|
| 385 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
| 386 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 387 |
+
|
| 388 |
+
if input_ids is not None and inputs_embeds is not None:
|
| 389 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
| 390 |
+
elif input_ids is not None:
|
| 391 |
+
input_shape = input_ids.size()
|
| 392 |
+
input_ids = input_ids.view(-1, input_shape[-1])
|
| 393 |
+
batch_size = input_ids.shape[0]
|
| 394 |
+
elif inputs_embeds is not None:
|
| 395 |
+
input_shape = inputs_embeds.size()[:-1]
|
| 396 |
+
batch_size = inputs_embeds.shape[0]
|
| 397 |
+
else:
|
| 398 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
| 399 |
+
|
| 400 |
+
if batch_size <= 0:
|
| 401 |
+
raise ValueError("batch_size has to be defined and > 0")
|
| 402 |
+
|
| 403 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
| 404 |
+
|
| 405 |
+
if past_key_values is None:
|
| 406 |
+
past_length = 0
|
| 407 |
+
past_key_values = tuple([None] * len(self.h))
|
| 408 |
+
else:
|
| 409 |
+
past_length = past_key_values[0][0].size(-2)
|
| 410 |
+
|
| 411 |
+
# Self-attention mask.
|
| 412 |
+
query_length = input_shape[-1]
|
| 413 |
+
|
| 414 |
+
seq_length_with_past = past_length + query_length
|
| 415 |
+
if attention_mask is None:
|
| 416 |
+
attention_mask = self._make_mask(query_length, past_length).to(device)
|
| 417 |
+
else:
|
| 418 |
+
attention_mask = attention_mask.to(device)
|
| 419 |
+
|
| 420 |
+
hidden_states = self.wte(input_ids) if inputs_embeds is None else inputs_embeds
|
| 421 |
+
|
| 422 |
+
alibi = get_alibi_biases(hidden_states.shape[0], seq_length_with_past,
|
| 423 |
+
self.num_heads, device, self.wte.weight.dtype)[:, :, -query_length:, :]
|
| 424 |
+
|
| 425 |
+
output_shape = input_shape + (hidden_states.size(-1),)
|
| 426 |
+
|
| 427 |
+
presents = [] if use_cache else None
|
| 428 |
+
all_self_attentions = () if output_attentions else None
|
| 429 |
+
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
|
| 430 |
+
all_hidden_states = () if output_hidden_states else None
|
| 431 |
+
for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
|
| 432 |
+
if output_hidden_states:
|
| 433 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
| 434 |
+
|
| 435 |
+
if self.gradient_checkpointing and self.training:
|
| 436 |
+
|
| 437 |
+
def create_custom_forward(module):
|
| 438 |
+
def custom_forward(*inputs):
|
| 439 |
+
# None for past_key_value
|
| 440 |
+
return module(*inputs, use_cache, output_attentions)
|
| 441 |
+
|
| 442 |
+
return custom_forward
|
| 443 |
+
|
| 444 |
+
outputs = torch.utils.checkpoint.checkpoint(
|
| 445 |
+
create_custom_forward(block),
|
| 446 |
+
hidden_states,
|
| 447 |
+
None,
|
| 448 |
+
attention_mask,
|
| 449 |
+
alibi
|
| 450 |
+
)
|
| 451 |
+
else:
|
| 452 |
+
outputs = block(
|
| 453 |
+
hidden_states,
|
| 454 |
+
layer_past=layer_past,
|
| 455 |
+
attention_mask=attention_mask,
|
| 456 |
+
alibi=alibi,
|
| 457 |
+
use_cache=use_cache,
|
| 458 |
+
output_attentions=output_attentions,
|
| 459 |
+
)
|
| 460 |
+
|
| 461 |
+
hidden_states = outputs[0]
|
| 462 |
+
if use_cache:
|
| 463 |
+
presents.append(outputs[1])
|
| 464 |
+
|
| 465 |
+
if output_attentions:
|
| 466 |
+
all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
|
| 467 |
+
if self.config.add_cross_attention:
|
| 468 |
+
all_cross_attentions = all_cross_attentions + (outputs[3 if use_cache else 2],)
|
| 469 |
+
|
| 470 |
+
hidden_states = hidden_states.view(output_shape)
|
| 471 |
+
# Add last hidden state
|
| 472 |
+
if output_hidden_states:
|
| 473 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
| 474 |
+
|
| 475 |
+
if not return_dict:
|
| 476 |
+
return tuple(
|
| 477 |
+
v
|
| 478 |
+
for v in [hidden_states, presents, all_hidden_states, all_self_attentions, all_cross_attentions]
|
| 479 |
+
if v is not None
|
| 480 |
+
)
|
| 481 |
+
|
| 482 |
+
return BaseModelOutputWithPastAndCrossAttentions(
|
| 483 |
+
last_hidden_state=hidden_states,
|
| 484 |
+
past_key_values=presents,
|
| 485 |
+
hidden_states=all_hidden_states,
|
| 486 |
+
attentions=all_self_attentions,
|
| 487 |
+
cross_attentions=all_cross_attentions,
|
| 488 |
+
)
|
| 489 |
+
|
| 490 |
+
|
| 491 |
+
class GPTRefactForCausalLM(GPTRefactPreTrainedModel):
|
| 492 |
+
_tied_weights_keys = ["lm_head.weight", "ln_f.weight"]
|
| 493 |
+
|
| 494 |
+
def __init__(self, config):
|
| 495 |
+
super().__init__(config)
|
| 496 |
+
self.transformer = GPTRefactModel(config)
|
| 497 |
+
self.ln_f = LayerNormNoBias(self.transformer.embed_dim, eps=config.layer_norm_epsilon)
|
| 498 |
+
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
|
| 499 |
+
|
| 500 |
+
# Initialize weights and apply final processing
|
| 501 |
+
self.post_init()
|
| 502 |
+
|
| 503 |
+
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs):
|
| 504 |
+
if inputs_embeds is not None and past_key_values is None:
|
| 505 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
| 506 |
+
else:
|
| 507 |
+
if past_key_values is not None:
|
| 508 |
+
model_inputs = {"input_ids": input_ids[..., -1:]}
|
| 509 |
+
else:
|
| 510 |
+
model_inputs = {"input_ids": input_ids}
|
| 511 |
+
|
| 512 |
+
model_inputs.update(
|
| 513 |
+
{
|
| 514 |
+
"past_key_values": past_key_values,
|
| 515 |
+
"use_cache": kwargs.get("use_cache"),
|
| 516 |
+
}
|
| 517 |
+
)
|
| 518 |
+
return model_inputs
|
| 519 |
+
|
| 520 |
+
def forward(
|
| 521 |
+
self,
|
| 522 |
+
input_ids: Optional[torch.Tensor] = None,
|
| 523 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
| 524 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 525 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
| 526 |
+
labels: Optional[torch.Tensor] = None,
|
| 527 |
+
use_cache: Optional[bool] = None,
|
| 528 |
+
output_attentions: Optional[bool] = None,
|
| 529 |
+
output_hidden_states: Optional[bool] = None,
|
| 530 |
+
return_dict: Optional[bool] = None,
|
| 531 |
+
) -> Union[Tuple, CausalLMOutputWithCrossAttentions]:
|
| 532 |
+
r"""
|
| 533 |
+
labels (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 534 |
+
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
|
| 535 |
+
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
|
| 536 |
+
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
|
| 537 |
+
"""
|
| 538 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 539 |
+
|
| 540 |
+
transformer_outputs = self.transformer(
|
| 541 |
+
input_ids,
|
| 542 |
+
past_key_values=past_key_values,
|
| 543 |
+
attention_mask=attention_mask,
|
| 544 |
+
inputs_embeds=inputs_embeds,
|
| 545 |
+
use_cache=use_cache,
|
| 546 |
+
output_attentions=output_attentions,
|
| 547 |
+
output_hidden_states=output_hidden_states,
|
| 548 |
+
return_dict=return_dict,
|
| 549 |
+
)
|
| 550 |
+
hidden_states = transformer_outputs[0]
|
| 551 |
+
|
| 552 |
+
x = self.ln_f(hidden_states)
|
| 553 |
+
lm_logits = self.lm_head(x)
|
| 554 |
+
|
| 555 |
+
loss = None
|
| 556 |
+
if labels is not None:
|
| 557 |
+
# Shift so that tokens < n predict n
|
| 558 |
+
shift_logits = lm_logits[..., :-1, :].contiguous()
|
| 559 |
+
shift_labels = labels[..., 1:].contiguous().to(shift_logits.device)
|
| 560 |
+
# Flatten the tokens
|
| 561 |
+
loss_fct = CrossEntropyLoss()
|
| 562 |
+
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
|
| 563 |
+
|
| 564 |
+
if not return_dict:
|
| 565 |
+
output = (lm_logits,) + transformer_outputs[1:]
|
| 566 |
+
return ((loss,) + output) if loss is not None else output
|
| 567 |
+
|
| 568 |
+
return CausalLMOutputWithCrossAttentions(
|
| 569 |
+
loss=loss,
|
| 570 |
+
logits=lm_logits,
|
| 571 |
+
past_key_values=transformer_outputs.past_key_values,
|
| 572 |
+
hidden_states=transformer_outputs.hidden_states,
|
| 573 |
+
attentions=transformer_outputs.attentions,
|
| 574 |
+
cross_attentions=transformer_outputs.cross_attentions,
|
| 575 |
+
)
|
| 576 |
+
|
| 577 |
+
@staticmethod
|
| 578 |
+
def _reorder_cache(
|
| 579 |
+
past_key_values: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor
|
| 580 |
+
) -> Tuple[Tuple[torch.Tensor]]:
|
| 581 |
+
"""
|
| 582 |
+
This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or
|
| 583 |
+
[`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
|
| 584 |
+
beam_idx at every generation step.
|
| 585 |
+
"""
|
| 586 |
+
return tuple(layer_past.index_select(0, beam_idx.to(layer_past.device)) for layer_past in past_key_values)
|
pytorch_model.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8c9761aabc16466fdf738d4fe42f12ee6844a360db07bde307ca808d0bfb6b8a
|
| 3 |
+
size 6343461637
|