Add new SentenceTransformer model
Browse files- 1_Pooling/config.json +3 -3
- README.md +371 -80
- modules.json +6 -0
1_Pooling/config.json
CHANGED
|
@@ -1,7 +1,7 @@
|
|
| 1 |
{
|
| 2 |
-
"word_embedding_dimension":
|
| 3 |
-
"pooling_mode_cls_token":
|
| 4 |
-
"pooling_mode_mean_tokens":
|
| 5 |
"pooling_mode_max_tokens": false,
|
| 6 |
"pooling_mode_mean_sqrt_len_tokens": false,
|
| 7 |
"pooling_mode_weightedmean_tokens": false,
|
|
|
|
| 1 |
{
|
| 2 |
+
"word_embedding_dimension": 384,
|
| 3 |
+
"pooling_mode_cls_token": false,
|
| 4 |
+
"pooling_mode_mean_tokens": true,
|
| 5 |
"pooling_mode_max_tokens": false,
|
| 6 |
"pooling_mode_mean_sqrt_len_tokens": false,
|
| 7 |
"pooling_mode_weightedmean_tokens": false,
|
README.md
CHANGED
|
@@ -5,51 +5,231 @@ tags:
|
|
| 5 |
- feature-extraction
|
| 6 |
- dense
|
| 7 |
- generated_from_trainer
|
| 8 |
-
- dataset_size:
|
| 9 |
- loss:MultipleNegativesRankingLoss
|
| 10 |
-
base_model:
|
| 11 |
widget:
|
| 12 |
-
- source_sentence:
|
| 13 |
sentences:
|
| 14 |
-
-
|
| 15 |
-
-
|
| 16 |
-
- What
|
| 17 |
-
- source_sentence:
|
|
|
|
| 18 |
sentences:
|
| 19 |
-
- How
|
| 20 |
-
-
|
| 21 |
-
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
sentences:
|
| 25 |
-
-
|
| 26 |
-
|
| 27 |
-
-
|
| 28 |
-
|
|
|
|
|
|
|
|
|
|
| 29 |
sentences:
|
| 30 |
-
- What are
|
| 31 |
-
-
|
| 32 |
-
-
|
| 33 |
-
- source_sentence: What is the
|
| 34 |
sentences:
|
| 35 |
-
-
|
| 36 |
-
|
| 37 |
-
-
|
|
|
|
| 38 |
pipeline_tag: sentence-similarity
|
| 39 |
library_name: sentence-transformers
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
---
|
| 41 |
|
| 42 |
-
# SentenceTransformer based on
|
| 43 |
|
| 44 |
-
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [
|
| 45 |
|
| 46 |
## Model Details
|
| 47 |
|
| 48 |
### Model Description
|
| 49 |
- **Model Type:** Sentence Transformer
|
| 50 |
-
- **Base model:** [
|
| 51 |
- **Maximum Sequence Length:** 128 tokens
|
| 52 |
-
- **Output Dimensionality:**
|
| 53 |
- **Similarity Function:** Cosine Similarity
|
| 54 |
<!-- - **Training Dataset:** Unknown -->
|
| 55 |
<!-- - **Language:** Unknown -->
|
|
@@ -66,7 +246,8 @@ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [p
|
|
| 66 |
```
|
| 67 |
SentenceTransformer(
|
| 68 |
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False, 'architecture': 'BertModel'})
|
| 69 |
-
(1): Pooling({'word_embedding_dimension':
|
|
|
|
| 70 |
)
|
| 71 |
```
|
| 72 |
|
|
@@ -85,23 +266,23 @@ Then you can load this model and run inference.
|
|
| 85 |
from sentence_transformers import SentenceTransformer
|
| 86 |
|
| 87 |
# Download from the 🤗 Hub
|
| 88 |
-
model = SentenceTransformer("
|
| 89 |
# Run inference
|
| 90 |
sentences = [
|
| 91 |
-
'What is the
|
| 92 |
-
'
|
| 93 |
-
'
|
| 94 |
]
|
| 95 |
embeddings = model.encode(sentences)
|
| 96 |
print(embeddings.shape)
|
| 97 |
-
# [3,
|
| 98 |
|
| 99 |
# Get the similarity scores for the embeddings
|
| 100 |
similarities = model.similarity(embeddings, embeddings)
|
| 101 |
print(similarities)
|
| 102 |
-
# tensor([[1.
|
| 103 |
-
# [
|
| 104 |
-
# [0.
|
| 105 |
```
|
| 106 |
|
| 107 |
<!--
|
|
@@ -128,6 +309,65 @@ You can finetune this model on your own dataset.
|
|
| 128 |
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
| 129 |
-->
|
| 130 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 131 |
<!--
|
| 132 |
## Bias, Risks and Limitations
|
| 133 |
|
|
@@ -146,23 +386,49 @@ You can finetune this model on your own dataset.
|
|
| 146 |
|
| 147 |
#### Unnamed Dataset
|
| 148 |
|
| 149 |
-
* Size:
|
| 150 |
-
* Columns: <code>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 151 |
* Approximate statistics based on the first 1000 samples:
|
| 152 |
-
| |
|
| 153 |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
|
| 154 |
| type | string | string | string |
|
| 155 |
-
| details | <ul><li>min: 6 tokens</li><li>mean: 15.
|
| 156 |
* Samples:
|
| 157 |
-
|
|
| 158 |
-
|
| 159 |
-
| <code>
|
| 160 |
-
| <code>
|
| 161 |
-
| <code>
|
| 162 |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
|
| 163 |
```json
|
| 164 |
{
|
| 165 |
-
"scale":
|
| 166 |
"similarity_fct": "cos_sim",
|
| 167 |
"gather_across_devices": false
|
| 168 |
}
|
|
@@ -171,36 +437,49 @@ You can finetune this model on your own dataset.
|
|
| 171 |
### Training Hyperparameters
|
| 172 |
#### Non-Default Hyperparameters
|
| 173 |
|
| 174 |
-
- `
|
| 175 |
-
- `
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 176 |
- `fp16`: True
|
| 177 |
-
- `
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 178 |
|
| 179 |
#### All Hyperparameters
|
| 180 |
<details><summary>Click to expand</summary>
|
| 181 |
|
| 182 |
- `overwrite_output_dir`: False
|
| 183 |
- `do_predict`: False
|
| 184 |
-
- `eval_strategy`:
|
| 185 |
- `prediction_loss_only`: True
|
| 186 |
-
- `per_device_train_batch_size`:
|
| 187 |
-
- `per_device_eval_batch_size`:
|
| 188 |
- `per_gpu_train_batch_size`: None
|
| 189 |
- `per_gpu_eval_batch_size`: None
|
| 190 |
- `gradient_accumulation_steps`: 1
|
| 191 |
- `eval_accumulation_steps`: None
|
| 192 |
- `torch_empty_cache_steps`: None
|
| 193 |
-
- `learning_rate`:
|
| 194 |
-
- `weight_decay`: 0.
|
| 195 |
- `adam_beta1`: 0.9
|
| 196 |
- `adam_beta2`: 0.999
|
| 197 |
- `adam_epsilon`: 1e-08
|
| 198 |
-
- `max_grad_norm`: 1
|
| 199 |
-
- `num_train_epochs`: 3
|
| 200 |
-
- `max_steps`:
|
| 201 |
- `lr_scheduler_type`: linear
|
| 202 |
- `lr_scheduler_kwargs`: {}
|
| 203 |
-
- `warmup_ratio`: 0.
|
| 204 |
- `warmup_steps`: 0
|
| 205 |
- `log_level`: passive
|
| 206 |
- `log_level_replica`: warning
|
|
@@ -228,14 +507,14 @@ You can finetune this model on your own dataset.
|
|
| 228 |
- `tpu_num_cores`: None
|
| 229 |
- `tpu_metrics_debug`: False
|
| 230 |
- `debug`: []
|
| 231 |
-
- `dataloader_drop_last`:
|
| 232 |
-
- `dataloader_num_workers`:
|
| 233 |
-
- `dataloader_prefetch_factor`:
|
| 234 |
- `past_index`: -1
|
| 235 |
- `disable_tqdm`: False
|
| 236 |
- `remove_unused_columns`: True
|
| 237 |
- `label_names`: None
|
| 238 |
-
- `load_best_model_at_end`:
|
| 239 |
- `ignore_data_skip`: False
|
| 240 |
- `fsdp`: []
|
| 241 |
- `fsdp_min_num_params`: 0
|
|
@@ -245,23 +524,23 @@ You can finetune this model on your own dataset.
|
|
| 245 |
- `parallelism_config`: None
|
| 246 |
- `deepspeed`: None
|
| 247 |
- `label_smoothing_factor`: 0.0
|
| 248 |
-
- `optim`:
|
| 249 |
- `optim_args`: None
|
| 250 |
- `adafactor`: False
|
| 251 |
- `group_by_length`: False
|
| 252 |
- `length_column_name`: length
|
| 253 |
- `project`: huggingface
|
| 254 |
- `trackio_space_id`: trackio
|
| 255 |
-
- `ddp_find_unused_parameters`:
|
| 256 |
- `ddp_bucket_cap_mb`: None
|
| 257 |
- `ddp_broadcast_buffers`: False
|
| 258 |
- `dataloader_pin_memory`: True
|
| 259 |
- `dataloader_persistent_workers`: False
|
| 260 |
- `skip_memory_metrics`: True
|
| 261 |
- `use_legacy_prediction_loop`: False
|
| 262 |
-
- `push_to_hub`:
|
| 263 |
- `resume_from_checkpoint`: None
|
| 264 |
-
- `hub_model_id`:
|
| 265 |
- `hub_strategy`: every_save
|
| 266 |
- `hub_private_repo`: None
|
| 267 |
- `hub_always_push`: False
|
|
@@ -288,31 +567,43 @@ You can finetune this model on your own dataset.
|
|
| 288 |
- `neftune_noise_alpha`: None
|
| 289 |
- `optim_target_modules`: None
|
| 290 |
- `batch_eval_metrics`: False
|
| 291 |
-
- `eval_on_start`:
|
| 292 |
- `use_liger_kernel`: False
|
| 293 |
- `liger_kernel_config`: None
|
| 294 |
- `eval_use_gather_object`: False
|
| 295 |
- `average_tokens_across_devices`: True
|
| 296 |
- `prompts`: None
|
| 297 |
- `batch_sampler`: batch_sampler
|
| 298 |
-
- `multi_dataset_batch_sampler`:
|
| 299 |
- `router_mapping`: {}
|
| 300 |
- `learning_rate_mapping`: {}
|
| 301 |
|
| 302 |
</details>
|
| 303 |
|
| 304 |
### Training Logs
|
| 305 |
-
| Epoch | Step | Training Loss |
|
| 306 |
-
|
| 307 |
-
| 0.
|
| 308 |
-
| 0.
|
| 309 |
-
| 0.
|
| 310 |
-
|
|
| 311 |
-
|
|
| 312 |
-
|
|
| 313 |
-
|
|
| 314 |
-
|
|
| 315 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 316 |
|
| 317 |
|
| 318 |
### Framework Versions
|
|
@@ -321,7 +612,7 @@ You can finetune this model on your own dataset.
|
|
| 321 |
- Transformers: 4.57.3
|
| 322 |
- PyTorch: 2.9.1+cu128
|
| 323 |
- Accelerate: 1.12.0
|
| 324 |
-
- Datasets:
|
| 325 |
- Tokenizers: 0.22.1
|
| 326 |
|
| 327 |
## Citation
|
|
|
|
| 5 |
- feature-extraction
|
| 6 |
- dense
|
| 7 |
- generated_from_trainer
|
| 8 |
+
- dataset_size:713743
|
| 9 |
- loss:MultipleNegativesRankingLoss
|
| 10 |
+
base_model: thenlper/gte-small
|
| 11 |
widget:
|
| 12 |
+
- source_sentence: 'Abraham Lincoln: Why is the Gettysburg Address so memorable?'
|
| 13 |
sentences:
|
| 14 |
+
- 'Abraham Lincoln: Why is the Gettysburg Address so memorable?'
|
| 15 |
+
- What does the Gettysburg Address really mean?
|
| 16 |
+
- What is eatalo.com?
|
| 17 |
+
- source_sentence: Has the influence of Ancient Carthage in science, math, and society
|
| 18 |
+
been underestimated?
|
| 19 |
sentences:
|
| 20 |
+
- How does one earn money online without an investment from home?
|
| 21 |
+
- Has the influence of Ancient Carthage in science, math, and society been underestimated?
|
| 22 |
+
- Has the influence of the Ancient Etruscans in science and math been underestimated?
|
| 23 |
+
- source_sentence: Is there any app that shares charging to others like share it how
|
| 24 |
+
we transfer files?
|
| 25 |
sentences:
|
| 26 |
+
- How do you think of Chinese claims that the present Private Arbitration is illegal,
|
| 27 |
+
its verdict violates the UNCLOS and is illegal?
|
| 28 |
+
- Is there any app that shares charging to others like share it how we transfer
|
| 29 |
+
files?
|
| 30 |
+
- Are there any platforms that provides end-to-end encryption for file transfer/
|
| 31 |
+
sharing?
|
| 32 |
+
- source_sentence: Why AAP’s MLA Dinesh Mohaniya has been arrested?
|
| 33 |
sentences:
|
| 34 |
+
- What are your views on the latest sex scandal by AAP MLA Sandeep Kumar?
|
| 35 |
+
- What is a dc current? What are some examples?
|
| 36 |
+
- Why AAP’s MLA Dinesh Mohaniya has been arrested?
|
| 37 |
+
- source_sentence: What is the difference between economic growth and economic development?
|
| 38 |
sentences:
|
| 39 |
+
- How cold can the Gobi Desert get, and how do its average temperatures compare
|
| 40 |
+
to the ones in the Simpson Desert?
|
| 41 |
+
- the difference between economic growth and economic development is What?
|
| 42 |
+
- What is the difference between economic growth and economic development?
|
| 43 |
pipeline_tag: sentence-similarity
|
| 44 |
library_name: sentence-transformers
|
| 45 |
+
metrics:
|
| 46 |
+
- cosine_accuracy@1
|
| 47 |
+
- cosine_accuracy@3
|
| 48 |
+
- cosine_accuracy@5
|
| 49 |
+
- cosine_accuracy@10
|
| 50 |
+
- cosine_precision@1
|
| 51 |
+
- cosine_precision@3
|
| 52 |
+
- cosine_precision@5
|
| 53 |
+
- cosine_precision@10
|
| 54 |
+
- cosine_recall@1
|
| 55 |
+
- cosine_recall@3
|
| 56 |
+
- cosine_recall@5
|
| 57 |
+
- cosine_recall@10
|
| 58 |
+
- cosine_ndcg@10
|
| 59 |
+
- cosine_mrr@10
|
| 60 |
+
- cosine_map@100
|
| 61 |
+
model-index:
|
| 62 |
+
- name: SentenceTransformer based on thenlper/gte-small
|
| 63 |
+
results:
|
| 64 |
+
- task:
|
| 65 |
+
type: information-retrieval
|
| 66 |
+
name: Information Retrieval
|
| 67 |
+
dataset:
|
| 68 |
+
name: NanoMSMARCO
|
| 69 |
+
type: NanoMSMARCO
|
| 70 |
+
metrics:
|
| 71 |
+
- type: cosine_accuracy@1
|
| 72 |
+
value: 0.28
|
| 73 |
+
name: Cosine Accuracy@1
|
| 74 |
+
- type: cosine_accuracy@3
|
| 75 |
+
value: 0.58
|
| 76 |
+
name: Cosine Accuracy@3
|
| 77 |
+
- type: cosine_accuracy@5
|
| 78 |
+
value: 0.64
|
| 79 |
+
name: Cosine Accuracy@5
|
| 80 |
+
- type: cosine_accuracy@10
|
| 81 |
+
value: 0.72
|
| 82 |
+
name: Cosine Accuracy@10
|
| 83 |
+
- type: cosine_precision@1
|
| 84 |
+
value: 0.28
|
| 85 |
+
name: Cosine Precision@1
|
| 86 |
+
- type: cosine_precision@3
|
| 87 |
+
value: 0.19333333333333333
|
| 88 |
+
name: Cosine Precision@3
|
| 89 |
+
- type: cosine_precision@5
|
| 90 |
+
value: 0.128
|
| 91 |
+
name: Cosine Precision@5
|
| 92 |
+
- type: cosine_precision@10
|
| 93 |
+
value: 0.07200000000000001
|
| 94 |
+
name: Cosine Precision@10
|
| 95 |
+
- type: cosine_recall@1
|
| 96 |
+
value: 0.28
|
| 97 |
+
name: Cosine Recall@1
|
| 98 |
+
- type: cosine_recall@3
|
| 99 |
+
value: 0.58
|
| 100 |
+
name: Cosine Recall@3
|
| 101 |
+
- type: cosine_recall@5
|
| 102 |
+
value: 0.64
|
| 103 |
+
name: Cosine Recall@5
|
| 104 |
+
- type: cosine_recall@10
|
| 105 |
+
value: 0.72
|
| 106 |
+
name: Cosine Recall@10
|
| 107 |
+
- type: cosine_ndcg@10
|
| 108 |
+
value: 0.5075011853031293
|
| 109 |
+
name: Cosine Ndcg@10
|
| 110 |
+
- type: cosine_mrr@10
|
| 111 |
+
value: 0.4386111111111111
|
| 112 |
+
name: Cosine Mrr@10
|
| 113 |
+
- type: cosine_map@100
|
| 114 |
+
value: 0.4533366047009664
|
| 115 |
+
name: Cosine Map@100
|
| 116 |
+
- task:
|
| 117 |
+
type: information-retrieval
|
| 118 |
+
name: Information Retrieval
|
| 119 |
+
dataset:
|
| 120 |
+
name: NanoNQ
|
| 121 |
+
type: NanoNQ
|
| 122 |
+
metrics:
|
| 123 |
+
- type: cosine_accuracy@1
|
| 124 |
+
value: 0.32
|
| 125 |
+
name: Cosine Accuracy@1
|
| 126 |
+
- type: cosine_accuracy@3
|
| 127 |
+
value: 0.54
|
| 128 |
+
name: Cosine Accuracy@3
|
| 129 |
+
- type: cosine_accuracy@5
|
| 130 |
+
value: 0.6
|
| 131 |
+
name: Cosine Accuracy@5
|
| 132 |
+
- type: cosine_accuracy@10
|
| 133 |
+
value: 0.66
|
| 134 |
+
name: Cosine Accuracy@10
|
| 135 |
+
- type: cosine_precision@1
|
| 136 |
+
value: 0.32
|
| 137 |
+
name: Cosine Precision@1
|
| 138 |
+
- type: cosine_precision@3
|
| 139 |
+
value: 0.18666666666666665
|
| 140 |
+
name: Cosine Precision@3
|
| 141 |
+
- type: cosine_precision@5
|
| 142 |
+
value: 0.128
|
| 143 |
+
name: Cosine Precision@5
|
| 144 |
+
- type: cosine_precision@10
|
| 145 |
+
value: 0.07
|
| 146 |
+
name: Cosine Precision@10
|
| 147 |
+
- type: cosine_recall@1
|
| 148 |
+
value: 0.3
|
| 149 |
+
name: Cosine Recall@1
|
| 150 |
+
- type: cosine_recall@3
|
| 151 |
+
value: 0.51
|
| 152 |
+
name: Cosine Recall@3
|
| 153 |
+
- type: cosine_recall@5
|
| 154 |
+
value: 0.58
|
| 155 |
+
name: Cosine Recall@5
|
| 156 |
+
- type: cosine_recall@10
|
| 157 |
+
value: 0.64
|
| 158 |
+
name: Cosine Recall@10
|
| 159 |
+
- type: cosine_ndcg@10
|
| 160 |
+
value: 0.48687028758380874
|
| 161 |
+
name: Cosine Ndcg@10
|
| 162 |
+
- type: cosine_mrr@10
|
| 163 |
+
value: 0.4465
|
| 164 |
+
name: Cosine Mrr@10
|
| 165 |
+
- type: cosine_map@100
|
| 166 |
+
value: 0.44172587957864395
|
| 167 |
+
name: Cosine Map@100
|
| 168 |
+
- task:
|
| 169 |
+
type: nano-beir
|
| 170 |
+
name: Nano BEIR
|
| 171 |
+
dataset:
|
| 172 |
+
name: NanoBEIR mean
|
| 173 |
+
type: NanoBEIR_mean
|
| 174 |
+
metrics:
|
| 175 |
+
- type: cosine_accuracy@1
|
| 176 |
+
value: 0.30000000000000004
|
| 177 |
+
name: Cosine Accuracy@1
|
| 178 |
+
- type: cosine_accuracy@3
|
| 179 |
+
value: 0.56
|
| 180 |
+
name: Cosine Accuracy@3
|
| 181 |
+
- type: cosine_accuracy@5
|
| 182 |
+
value: 0.62
|
| 183 |
+
name: Cosine Accuracy@5
|
| 184 |
+
- type: cosine_accuracy@10
|
| 185 |
+
value: 0.69
|
| 186 |
+
name: Cosine Accuracy@10
|
| 187 |
+
- type: cosine_precision@1
|
| 188 |
+
value: 0.30000000000000004
|
| 189 |
+
name: Cosine Precision@1
|
| 190 |
+
- type: cosine_precision@3
|
| 191 |
+
value: 0.19
|
| 192 |
+
name: Cosine Precision@3
|
| 193 |
+
- type: cosine_precision@5
|
| 194 |
+
value: 0.128
|
| 195 |
+
name: Cosine Precision@5
|
| 196 |
+
- type: cosine_precision@10
|
| 197 |
+
value: 0.07100000000000001
|
| 198 |
+
name: Cosine Precision@10
|
| 199 |
+
- type: cosine_recall@1
|
| 200 |
+
value: 0.29000000000000004
|
| 201 |
+
name: Cosine Recall@1
|
| 202 |
+
- type: cosine_recall@3
|
| 203 |
+
value: 0.5449999999999999
|
| 204 |
+
name: Cosine Recall@3
|
| 205 |
+
- type: cosine_recall@5
|
| 206 |
+
value: 0.61
|
| 207 |
+
name: Cosine Recall@5
|
| 208 |
+
- type: cosine_recall@10
|
| 209 |
+
value: 0.6799999999999999
|
| 210 |
+
name: Cosine Recall@10
|
| 211 |
+
- type: cosine_ndcg@10
|
| 212 |
+
value: 0.497185736443469
|
| 213 |
+
name: Cosine Ndcg@10
|
| 214 |
+
- type: cosine_mrr@10
|
| 215 |
+
value: 0.4425555555555556
|
| 216 |
+
name: Cosine Mrr@10
|
| 217 |
+
- type: cosine_map@100
|
| 218 |
+
value: 0.44753124213980516
|
| 219 |
+
name: Cosine Map@100
|
| 220 |
---
|
| 221 |
|
| 222 |
+
# SentenceTransformer based on thenlper/gte-small
|
| 223 |
|
| 224 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [thenlper/gte-small](https://huggingface.co/thenlper/gte-small). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
| 225 |
|
| 226 |
## Model Details
|
| 227 |
|
| 228 |
### Model Description
|
| 229 |
- **Model Type:** Sentence Transformer
|
| 230 |
+
- **Base model:** [thenlper/gte-small](https://huggingface.co/thenlper/gte-small) <!-- at revision 17e1f347d17fe144873b1201da91788898c639cd -->
|
| 231 |
- **Maximum Sequence Length:** 128 tokens
|
| 232 |
+
- **Output Dimensionality:** 384 dimensions
|
| 233 |
- **Similarity Function:** Cosine Similarity
|
| 234 |
<!-- - **Training Dataset:** Unknown -->
|
| 235 |
<!-- - **Language:** Unknown -->
|
|
|
|
| 246 |
```
|
| 247 |
SentenceTransformer(
|
| 248 |
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False, 'architecture': 'BertModel'})
|
| 249 |
+
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
| 250 |
+
(2): Normalize()
|
| 251 |
)
|
| 252 |
```
|
| 253 |
|
|
|
|
| 266 |
from sentence_transformers import SentenceTransformer
|
| 267 |
|
| 268 |
# Download from the 🤗 Hub
|
| 269 |
+
model = SentenceTransformer("redis/model-b-structured")
|
| 270 |
# Run inference
|
| 271 |
sentences = [
|
| 272 |
+
'What is the difference between economic growth and economic development?',
|
| 273 |
+
'What is the difference between economic growth and economic development?',
|
| 274 |
+
'the difference between economic growth and economic development is What?',
|
| 275 |
]
|
| 276 |
embeddings = model.encode(sentences)
|
| 277 |
print(embeddings.shape)
|
| 278 |
+
# [3, 384]
|
| 279 |
|
| 280 |
# Get the similarity scores for the embeddings
|
| 281 |
similarities = model.similarity(embeddings, embeddings)
|
| 282 |
print(similarities)
|
| 283 |
+
# tensor([[ 1.0001, 1.0001, -0.0307],
|
| 284 |
+
# [ 1.0001, 1.0001, -0.0307],
|
| 285 |
+
# [-0.0307, -0.0307, 1.0001]])
|
| 286 |
```
|
| 287 |
|
| 288 |
<!--
|
|
|
|
| 309 |
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
| 310 |
-->
|
| 311 |
|
| 312 |
+
## Evaluation
|
| 313 |
+
|
| 314 |
+
### Metrics
|
| 315 |
+
|
| 316 |
+
#### Information Retrieval
|
| 317 |
+
|
| 318 |
+
* Datasets: `NanoMSMARCO` and `NanoNQ`
|
| 319 |
+
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
|
| 320 |
+
|
| 321 |
+
| Metric | NanoMSMARCO | NanoNQ |
|
| 322 |
+
|:--------------------|:------------|:-----------|
|
| 323 |
+
| cosine_accuracy@1 | 0.28 | 0.32 |
|
| 324 |
+
| cosine_accuracy@3 | 0.58 | 0.54 |
|
| 325 |
+
| cosine_accuracy@5 | 0.64 | 0.6 |
|
| 326 |
+
| cosine_accuracy@10 | 0.72 | 0.66 |
|
| 327 |
+
| cosine_precision@1 | 0.28 | 0.32 |
|
| 328 |
+
| cosine_precision@3 | 0.1933 | 0.1867 |
|
| 329 |
+
| cosine_precision@5 | 0.128 | 0.128 |
|
| 330 |
+
| cosine_precision@10 | 0.072 | 0.07 |
|
| 331 |
+
| cosine_recall@1 | 0.28 | 0.3 |
|
| 332 |
+
| cosine_recall@3 | 0.58 | 0.51 |
|
| 333 |
+
| cosine_recall@5 | 0.64 | 0.58 |
|
| 334 |
+
| cosine_recall@10 | 0.72 | 0.64 |
|
| 335 |
+
| **cosine_ndcg@10** | **0.5075** | **0.4869** |
|
| 336 |
+
| cosine_mrr@10 | 0.4386 | 0.4465 |
|
| 337 |
+
| cosine_map@100 | 0.4533 | 0.4417 |
|
| 338 |
+
|
| 339 |
+
#### Nano BEIR
|
| 340 |
+
|
| 341 |
+
* Dataset: `NanoBEIR_mean`
|
| 342 |
+
* Evaluated with [<code>NanoBEIREvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.NanoBEIREvaluator) with these parameters:
|
| 343 |
+
```json
|
| 344 |
+
{
|
| 345 |
+
"dataset_names": [
|
| 346 |
+
"msmarco",
|
| 347 |
+
"nq"
|
| 348 |
+
],
|
| 349 |
+
"dataset_id": "lightonai/NanoBEIR-en"
|
| 350 |
+
}
|
| 351 |
+
```
|
| 352 |
+
|
| 353 |
+
| Metric | Value |
|
| 354 |
+
|:--------------------|:-----------|
|
| 355 |
+
| cosine_accuracy@1 | 0.3 |
|
| 356 |
+
| cosine_accuracy@3 | 0.56 |
|
| 357 |
+
| cosine_accuracy@5 | 0.62 |
|
| 358 |
+
| cosine_accuracy@10 | 0.69 |
|
| 359 |
+
| cosine_precision@1 | 0.3 |
|
| 360 |
+
| cosine_precision@3 | 0.19 |
|
| 361 |
+
| cosine_precision@5 | 0.128 |
|
| 362 |
+
| cosine_precision@10 | 0.071 |
|
| 363 |
+
| cosine_recall@1 | 0.29 |
|
| 364 |
+
| cosine_recall@3 | 0.545 |
|
| 365 |
+
| cosine_recall@5 | 0.61 |
|
| 366 |
+
| cosine_recall@10 | 0.68 |
|
| 367 |
+
| **cosine_ndcg@10** | **0.4972** |
|
| 368 |
+
| cosine_mrr@10 | 0.4426 |
|
| 369 |
+
| cosine_map@100 | 0.4475 |
|
| 370 |
+
|
| 371 |
<!--
|
| 372 |
## Bias, Risks and Limitations
|
| 373 |
|
|
|
|
| 386 |
|
| 387 |
#### Unnamed Dataset
|
| 388 |
|
| 389 |
+
* Size: 713,743 training samples
|
| 390 |
+
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
|
| 391 |
+
* Approximate statistics based on the first 1000 samples:
|
| 392 |
+
| | anchor | positive | negative |
|
| 393 |
+
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
|
| 394 |
+
| type | string | string | string |
|
| 395 |
+
| details | <ul><li>min: 6 tokens</li><li>mean: 16.07 tokens</li><li>max: 53 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 16.03 tokens</li><li>max: 53 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 16.81 tokens</li><li>max: 58 tokens</li></ul> |
|
| 396 |
+
* Samples:
|
| 397 |
+
| anchor | positive | negative |
|
| 398 |
+
|:-------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------|
|
| 399 |
+
| <code>Which one is better Linux OS? Ubuntu or Mint?</code> | <code>Why do you use Linux Mint?</code> | <code>Which one is not better Linux OS ? Ubuntu or Mint ?</code> |
|
| 400 |
+
| <code>What is flow?</code> | <code>What is flow?</code> | <code>What are flow lines?</code> |
|
| 401 |
+
| <code>How is Trump planning to get Mexico to pay for his supposed wall?</code> | <code>How is it possible for Donald Trump to force Mexico to pay for the wall?</code> | <code>Why do we connect the positive terminal before the negative terminal to ground in a vehicle battery?</code> |
|
| 402 |
+
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
|
| 403 |
+
```json
|
| 404 |
+
{
|
| 405 |
+
"scale": 7.0,
|
| 406 |
+
"similarity_fct": "cos_sim",
|
| 407 |
+
"gather_across_devices": false
|
| 408 |
+
}
|
| 409 |
+
```
|
| 410 |
+
|
| 411 |
+
### Evaluation Dataset
|
| 412 |
+
|
| 413 |
+
#### Unnamed Dataset
|
| 414 |
+
|
| 415 |
+
* Size: 40,000 evaluation samples
|
| 416 |
+
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
|
| 417 |
* Approximate statistics based on the first 1000 samples:
|
| 418 |
+
| | anchor | positive | negative |
|
| 419 |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
|
| 420 |
| type | string | string | string |
|
| 421 |
+
| details | <ul><li>min: 6 tokens</li><li>mean: 15.52 tokens</li><li>max: 74 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 15.51 tokens</li><li>max: 74 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 16.79 tokens</li><li>max: 69 tokens</li></ul> |
|
| 422 |
* Samples:
|
| 423 |
+
| anchor | positive | negative |
|
| 424 |
+
|:-------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
| 425 |
+
| <code>Why are all my questions on Quora marked needing improvement?</code> | <code>Why are all my questions immediately being marked as needing improvement?</code> | <code>For a post-graduate student in IIT, is it allowed to take an external scholarship as a top-up to his/her MHRD assistantship?</code> |
|
| 426 |
+
| <code>Can blue butter fly needle with vaccum tube be reused? Is it HIV risk? . Heard the needle is too small to be reused . Had blood draw at clinic?</code> | <code>Can blue butter fly needle with vaccum tube be reused? Is it HIV risk? . Heard the needle is too small to be reused . Had blood draw at clinic?</code> | <code>Can blue butter fly needle with vaccum tube be reused not ? Is it HIV risk ? . Heard the needle is too small to be reused . Had blood draw at clinic ?</code> |
|
| 427 |
+
| <code>Why do people still believe the world is flat?</code> | <code>Why are there still people who believe the world is flat?</code> | <code>I'm not able to buy Udemy course .it is not accepting mine and my friends debit card.my card can be used for Flipkart .how to purchase now?</code> |
|
| 428 |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
|
| 429 |
```json
|
| 430 |
{
|
| 431 |
+
"scale": 7.0,
|
| 432 |
"similarity_fct": "cos_sim",
|
| 433 |
"gather_across_devices": false
|
| 434 |
}
|
|
|
|
| 437 |
### Training Hyperparameters
|
| 438 |
#### Non-Default Hyperparameters
|
| 439 |
|
| 440 |
+
- `eval_strategy`: steps
|
| 441 |
+
- `per_device_train_batch_size`: 128
|
| 442 |
+
- `per_device_eval_batch_size`: 128
|
| 443 |
+
- `learning_rate`: 2e-05
|
| 444 |
+
- `weight_decay`: 0.0001
|
| 445 |
+
- `max_steps`: 5000
|
| 446 |
+
- `warmup_ratio`: 0.1
|
| 447 |
- `fp16`: True
|
| 448 |
+
- `dataloader_drop_last`: True
|
| 449 |
+
- `dataloader_num_workers`: 1
|
| 450 |
+
- `dataloader_prefetch_factor`: 1
|
| 451 |
+
- `load_best_model_at_end`: True
|
| 452 |
+
- `optim`: adamw_torch
|
| 453 |
+
- `ddp_find_unused_parameters`: False
|
| 454 |
+
- `push_to_hub`: True
|
| 455 |
+
- `hub_model_id`: redis/model-b-structured
|
| 456 |
+
- `eval_on_start`: True
|
| 457 |
|
| 458 |
#### All Hyperparameters
|
| 459 |
<details><summary>Click to expand</summary>
|
| 460 |
|
| 461 |
- `overwrite_output_dir`: False
|
| 462 |
- `do_predict`: False
|
| 463 |
+
- `eval_strategy`: steps
|
| 464 |
- `prediction_loss_only`: True
|
| 465 |
+
- `per_device_train_batch_size`: 128
|
| 466 |
+
- `per_device_eval_batch_size`: 128
|
| 467 |
- `per_gpu_train_batch_size`: None
|
| 468 |
- `per_gpu_eval_batch_size`: None
|
| 469 |
- `gradient_accumulation_steps`: 1
|
| 470 |
- `eval_accumulation_steps`: None
|
| 471 |
- `torch_empty_cache_steps`: None
|
| 472 |
+
- `learning_rate`: 2e-05
|
| 473 |
+
- `weight_decay`: 0.0001
|
| 474 |
- `adam_beta1`: 0.9
|
| 475 |
- `adam_beta2`: 0.999
|
| 476 |
- `adam_epsilon`: 1e-08
|
| 477 |
+
- `max_grad_norm`: 1.0
|
| 478 |
+
- `num_train_epochs`: 3.0
|
| 479 |
+
- `max_steps`: 5000
|
| 480 |
- `lr_scheduler_type`: linear
|
| 481 |
- `lr_scheduler_kwargs`: {}
|
| 482 |
+
- `warmup_ratio`: 0.1
|
| 483 |
- `warmup_steps`: 0
|
| 484 |
- `log_level`: passive
|
| 485 |
- `log_level_replica`: warning
|
|
|
|
| 507 |
- `tpu_num_cores`: None
|
| 508 |
- `tpu_metrics_debug`: False
|
| 509 |
- `debug`: []
|
| 510 |
+
- `dataloader_drop_last`: True
|
| 511 |
+
- `dataloader_num_workers`: 1
|
| 512 |
+
- `dataloader_prefetch_factor`: 1
|
| 513 |
- `past_index`: -1
|
| 514 |
- `disable_tqdm`: False
|
| 515 |
- `remove_unused_columns`: True
|
| 516 |
- `label_names`: None
|
| 517 |
+
- `load_best_model_at_end`: True
|
| 518 |
- `ignore_data_skip`: False
|
| 519 |
- `fsdp`: []
|
| 520 |
- `fsdp_min_num_params`: 0
|
|
|
|
| 524 |
- `parallelism_config`: None
|
| 525 |
- `deepspeed`: None
|
| 526 |
- `label_smoothing_factor`: 0.0
|
| 527 |
+
- `optim`: adamw_torch
|
| 528 |
- `optim_args`: None
|
| 529 |
- `adafactor`: False
|
| 530 |
- `group_by_length`: False
|
| 531 |
- `length_column_name`: length
|
| 532 |
- `project`: huggingface
|
| 533 |
- `trackio_space_id`: trackio
|
| 534 |
+
- `ddp_find_unused_parameters`: False
|
| 535 |
- `ddp_bucket_cap_mb`: None
|
| 536 |
- `ddp_broadcast_buffers`: False
|
| 537 |
- `dataloader_pin_memory`: True
|
| 538 |
- `dataloader_persistent_workers`: False
|
| 539 |
- `skip_memory_metrics`: True
|
| 540 |
- `use_legacy_prediction_loop`: False
|
| 541 |
+
- `push_to_hub`: True
|
| 542 |
- `resume_from_checkpoint`: None
|
| 543 |
+
- `hub_model_id`: redis/model-b-structured
|
| 544 |
- `hub_strategy`: every_save
|
| 545 |
- `hub_private_repo`: None
|
| 546 |
- `hub_always_push`: False
|
|
|
|
| 567 |
- `neftune_noise_alpha`: None
|
| 568 |
- `optim_target_modules`: None
|
| 569 |
- `batch_eval_metrics`: False
|
| 570 |
+
- `eval_on_start`: True
|
| 571 |
- `use_liger_kernel`: False
|
| 572 |
- `liger_kernel_config`: None
|
| 573 |
- `eval_use_gather_object`: False
|
| 574 |
- `average_tokens_across_devices`: True
|
| 575 |
- `prompts`: None
|
| 576 |
- `batch_sampler`: batch_sampler
|
| 577 |
+
- `multi_dataset_batch_sampler`: proportional
|
| 578 |
- `router_mapping`: {}
|
| 579 |
- `learning_rate_mapping`: {}
|
| 580 |
|
| 581 |
</details>
|
| 582 |
|
| 583 |
### Training Logs
|
| 584 |
+
| Epoch | Step | Training Loss | Validation Loss | NanoMSMARCO_cosine_ndcg@10 | NanoNQ_cosine_ndcg@10 | NanoBEIR_mean_cosine_ndcg@10 |
|
| 585 |
+
|:------:|:----:|:-------------:|:---------------:|:--------------------------:|:---------------------:|:----------------------------:|
|
| 586 |
+
| 0 | 0 | - | 3.6810 | 0.6259 | 0.6583 | 0.6421 |
|
| 587 |
+
| 0.0448 | 250 | 2.585 | 0.6156 | 0.5723 | 0.5298 | 0.5511 |
|
| 588 |
+
| 0.0897 | 500 | 0.6653 | 0.4478 | 0.6142 | 0.5301 | 0.5722 |
|
| 589 |
+
| 0.1345 | 750 | 0.5594 | 0.4191 | 0.5786 | 0.5355 | 0.5570 |
|
| 590 |
+
| 0.1793 | 1000 | 0.5315 | 0.4058 | 0.5597 | 0.5291 | 0.5444 |
|
| 591 |
+
| 0.2242 | 1250 | 0.5141 | 0.3980 | 0.5490 | 0.5255 | 0.5372 |
|
| 592 |
+
| 0.2690 | 1500 | 0.4986 | 0.3916 | 0.5286 | 0.5331 | 0.5308 |
|
| 593 |
+
| 0.3138 | 1750 | 0.4909 | 0.3857 | 0.5386 | 0.5297 | 0.5342 |
|
| 594 |
+
| 0.3587 | 2000 | 0.4831 | 0.3818 | 0.5175 | 0.5155 | 0.5165 |
|
| 595 |
+
| 0.4035 | 2250 | 0.4752 | 0.3785 | 0.5105 | 0.5292 | 0.5198 |
|
| 596 |
+
| 0.4484 | 2500 | 0.4707 | 0.3758 | 0.5208 | 0.4986 | 0.5097 |
|
| 597 |
+
| 0.4932 | 2750 | 0.4646 | 0.3733 | 0.5182 | 0.5016 | 0.5099 |
|
| 598 |
+
| 0.5380 | 3000 | 0.4636 | 0.3713 | 0.5127 | 0.4969 | 0.5048 |
|
| 599 |
+
| 0.5829 | 3250 | 0.4602 | 0.3693 | 0.5112 | 0.4869 | 0.4991 |
|
| 600 |
+
| 0.6277 | 3500 | 0.4597 | 0.3678 | 0.5170 | 0.5000 | 0.5085 |
|
| 601 |
+
| 0.6725 | 3750 | 0.4555 | 0.3665 | 0.5127 | 0.4899 | 0.5013 |
|
| 602 |
+
| 0.7174 | 4000 | 0.4541 | 0.3661 | 0.5130 | 0.4869 | 0.5000 |
|
| 603 |
+
| 0.7622 | 4250 | 0.4528 | 0.3649 | 0.5078 | 0.4887 | 0.4982 |
|
| 604 |
+
| 0.8070 | 4500 | 0.4495 | 0.3643 | 0.5073 | 0.4867 | 0.4970 |
|
| 605 |
+
| 0.8519 | 4750 | 0.4524 | 0.3640 | 0.5049 | 0.4875 | 0.4962 |
|
| 606 |
+
| 0.8967 | 5000 | 0.4516 | 0.3637 | 0.5075 | 0.4869 | 0.4972 |
|
| 607 |
|
| 608 |
|
| 609 |
### Framework Versions
|
|
|
|
| 612 |
- Transformers: 4.57.3
|
| 613 |
- PyTorch: 2.9.1+cu128
|
| 614 |
- Accelerate: 1.12.0
|
| 615 |
+
- Datasets: 2.21.0
|
| 616 |
- Tokenizers: 0.22.1
|
| 617 |
|
| 618 |
## Citation
|
modules.json
CHANGED
|
@@ -10,5 +10,11 @@
|
|
| 10 |
"name": "1",
|
| 11 |
"path": "1_Pooling",
|
| 12 |
"type": "sentence_transformers.models.Pooling"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
}
|
| 14 |
]
|
|
|
|
| 10 |
"name": "1",
|
| 11 |
"path": "1_Pooling",
|
| 12 |
"type": "sentence_transformers.models.Pooling"
|
| 13 |
+
},
|
| 14 |
+
{
|
| 15 |
+
"idx": 2,
|
| 16 |
+
"name": "2",
|
| 17 |
+
"path": "2_Normalize",
|
| 18 |
+
"type": "sentence_transformers.models.Normalize"
|
| 19 |
}
|
| 20 |
]
|