srijithrajamohan commited on
Commit
f1b752a
·
verified ·
1 Parent(s): bd18115

Updated README to a bare minimum template (#4)

Browse files

- Updated README file to a bare minimum template (2a034cf42ffe0248c3b7f6197a4f38ad66a0d7aa)

Files changed (1) hide show
  1. README.md +33 -321
README.md CHANGED
@@ -2,24 +2,16 @@
2
  tags:
3
  - sentence-transformers
4
  - sentence-similarity
5
- - feature-extraction
6
- - generated_from_trainer
7
- - dataset_size:2438
8
- - loss:MatryoshkaLoss
9
  - loss:OnlineContrastiveLoss
10
  base_model: Alibaba-NLP/gte-modernbert-base
11
-
12
  pipeline_tag: sentence-similarity
13
  library_name: sentence-transformers
14
  metrics:
15
  - cosine_accuracy
16
- - cosine_accuracy_threshold
17
- - cosine_f1
18
- - cosine_f1_threshold
19
  - cosine_precision
20
  - cosine_recall
 
21
  - cosine_ap
22
- - cosine_mcc
23
  model-index:
24
  - name: SentenceTransformer based on Alibaba-NLP/gte-modernbert-base
25
  results:
@@ -27,38 +19,29 @@ model-index:
27
  type: my-binary-classification
28
  name: My Binary Classification
29
  dataset:
30
- name: Unknown
31
  type: unknown
32
  metrics:
33
  - type: cosine_accuracy
34
- value: 0.9159836065573771
35
  name: Cosine Accuracy
36
- - type: cosine_accuracy_threshold
37
- value: 0.8090976476669312
38
- name: Cosine Accuracy Threshold
39
  - type: cosine_f1
40
- value: 0.9216061185468452
41
  name: Cosine F1
42
- - type: cosine_f1_threshold
43
- value: 0.8090976476669312
44
- name: Cosine F1 Threshold
45
  - type: cosine_precision
46
- value: 0.9305019305019305
47
  name: Cosine Precision
48
  - type: cosine_recall
49
- value: 0.9128787878787878
50
  name: Cosine Recall
51
  - type: cosine_ap
52
- value: 0.974188222191262
53
  name: Cosine Ap
54
- - type: cosine_mcc
55
- value: 0.8312925398469787
56
- name: Cosine Mcc
57
  ---
58
 
59
  # SentenceTransformer based on Alibaba-NLP/gte-modernbert-base
60
 
61
- This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Alibaba-NLP/gte-modernbert-base](https://huggingface.co/Alibaba-NLP/gte-modernbert-base) on the csv dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
62
 
63
  ## Model Details
64
 
@@ -69,7 +52,7 @@ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [A
69
  - **Output Dimensionality:** 768 dimensions
70
  - **Similarity Function:** Cosine Similarity
71
  - **Training Dataset:**
72
- - csv
73
  <!-- - **Language:** Unknown -->
74
  <!-- - **License:** Unknown -->
75
 
@@ -83,15 +66,13 @@ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [A
83
 
84
  ```
85
  SentenceTransformer(
86
- (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: ModernBertModel
87
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
88
  )
89
  ```
90
 
91
  ## Usage
92
 
93
- ### Direct Usage (Sentence Transformers)
94
-
95
  First install the Sentence Transformers library:
96
 
97
  ```bash
@@ -103,12 +84,12 @@ Then you can load this model and run inference.
103
  from sentence_transformers import SentenceTransformer
104
 
105
  # Download from the 🤗 Hub
106
- model = SentenceTransformer("waris-gill/ModernBert-Medical-v1")
107
  # Run inference
108
  sentences = [
109
- 'My rheumatologist said \'if a patient has lupus then prednisone doesn\'t work." why is that?',
110
- "I have lupus,my rheumatologist told me that prednisone doesn't work in my case. Could you educate me why? What are my chances? ",
111
- 'Hello doctor, my grandmother has 3rd degree bed sore. What can be done to help?',
112
  ]
113
  embeddings = model.encode(sentences)
114
  print(embeddings.shape)
@@ -117,286 +98,36 @@ print(embeddings.shape)
117
  # Get the similarity scores for the embeddings
118
  similarities = model.similarity(embeddings, embeddings)
119
  print(similarities.shape)
120
- # [3, 3]
121
- ```
122
-
123
- <!--
124
- ### Direct Usage (Transformers)
125
-
126
- <details><summary>Click to see the direct usage in Transformers</summary>
127
-
128
- </details>
129
- -->
130
-
131
- <!--
132
- ### Downstream Usage (Sentence Transformers)
133
-
134
- You can finetune this model on your own dataset.
135
 
136
- <details><summary>Click to expand</summary>
137
-
138
- </details>
139
- -->
140
-
141
- <!--
142
- ### Out-of-Scope Use
143
-
144
- *List how the model may foreseeably be misused and address what users ought not to do with the model.*
145
- -->
146
-
147
- ## Evaluation
148
-
149
- ### Metrics
150
-
151
- #### My Binary Classification
152
-
153
- * Evaluated with <code>scache.train.MyBinaryClassificationEvaluator</code>
154
-
155
- | Metric | Value |
156
- |:--------------------------|:-----------|
157
- | cosine_accuracy | 0.916 |
158
- | cosine_accuracy_threshold | 0.8091 |
159
- | cosine_f1 | 0.9216 |
160
- | cosine_f1_threshold | 0.8091 |
161
- | cosine_precision | 0.9305 |
162
- | cosine_recall | 0.9129 |
163
- | **cosine_ap** | **0.9742** |
164
- | cosine_mcc | 0.8313 |
165
-
166
- <!--
167
- ## Bias, Risks and Limitations
168
 
169
- *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
170
- -->
171
 
172
- <!--
173
- ### Recommendations
174
 
175
- *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
176
- -->
 
 
 
 
 
177
 
178
- ## Training Details
179
 
180
  ### Training Dataset
181
 
182
  #### csv
183
 
184
  * Dataset: csv
185
- * Size: 2,438 training samples
186
  * Columns: <code>question_1</code>, <code>question_2</code>, and <code>label</code>
187
- * Approximate statistics based on the first 1000 samples:
188
-
189
- * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
190
- ```json
191
- {
192
- "loss": "OnlineContrastiveLoss",
193
- "matryoshka_dims": [
194
- 768,
195
- 512,
196
- 256,
197
- 128,
198
- 64
199
- ],
200
- "matryoshka_weights": [
201
- 1,
202
- 1,
203
- 1,
204
- 1,
205
- 1
206
- ],
207
- "n_dims_per_step": -1
208
- }
209
- ```
210
 
211
  ### Evaluation Dataset
212
 
213
  #### csv
214
 
215
  * Dataset: csv
216
- * Size: 2,438 evaluation samples
217
-
218
-
219
- ### Training Hyperparameters
220
- #### Non-Default Hyperparameters
221
-
222
- - `eval_strategy`: steps
223
- - `per_device_train_batch_size`: 16
224
- - `per_device_eval_batch_size`: 256
225
- - `learning_rate`: 6.5383156211679e-05
226
- - `max_grad_norm`: 0.5
227
- - `num_train_epochs`: 1
228
- - `lr_scheduler_type`: constant
229
- - `load_best_model_at_end`: True
230
- - `torch_compile`: True
231
- - `torch_compile_backend`: inductor
232
- - `batch_sampler`: no_duplicates
233
-
234
- #### All Hyperparameters
235
- <details><summary>Click to expand</summary>
236
-
237
- - `overwrite_output_dir`: False
238
- - `do_predict`: False
239
- - `eval_strategy`: steps
240
- - `prediction_loss_only`: True
241
- - `per_device_train_batch_size`: 16
242
- - `per_device_eval_batch_size`: 256
243
- - `per_gpu_train_batch_size`: None
244
- - `per_gpu_eval_batch_size`: None
245
- - `gradient_accumulation_steps`: 1
246
- - `eval_accumulation_steps`: None
247
- - `torch_empty_cache_steps`: None
248
- - `learning_rate`: 6.5383156211679e-05
249
- - `weight_decay`: 0.0
250
- - `adam_beta1`: 0.9
251
- - `adam_beta2`: 0.999
252
- - `adam_epsilon`: 1e-08
253
- - `max_grad_norm`: 0.5
254
- - `num_train_epochs`: 1
255
- - `max_steps`: -1
256
- - `lr_scheduler_type`: constant
257
- - `lr_scheduler_kwargs`: {}
258
- - `warmup_ratio`: 0.0
259
- - `warmup_steps`: 0
260
- - `log_level`: passive
261
- - `log_level_replica`: warning
262
- - `log_on_each_node`: True
263
- - `logging_nan_inf_filter`: True
264
- - `save_safetensors`: True
265
- - `save_on_each_node`: False
266
- - `save_only_model`: False
267
- - `restore_callback_states_from_checkpoint`: False
268
- - `no_cuda`: False
269
- - `use_cpu`: False
270
- - `use_mps_device`: False
271
- - `seed`: 42
272
- - `data_seed`: None
273
- - `jit_mode_eval`: False
274
- - `use_ipex`: False
275
- - `bf16`: False
276
- - `fp16`: False
277
- - `fp16_opt_level`: O1
278
- - `half_precision_backend`: auto
279
- - `bf16_full_eval`: False
280
- - `fp16_full_eval`: False
281
- - `tf32`: None
282
- - `local_rank`: 0
283
- - `ddp_backend`: None
284
- - `tpu_num_cores`: None
285
- - `tpu_metrics_debug`: False
286
- - `debug`: []
287
- - `dataloader_drop_last`: False
288
- - `dataloader_num_workers`: 0
289
- - `dataloader_prefetch_factor`: None
290
- - `past_index`: -1
291
- - `disable_tqdm`: False
292
- - `remove_unused_columns`: True
293
- - `label_names`: None
294
- - `load_best_model_at_end`: True
295
- - `ignore_data_skip`: False
296
- - `fsdp`: []
297
- - `fsdp_min_num_params`: 0
298
- - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
299
- - `fsdp_transformer_layer_cls_to_wrap`: None
300
- - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
301
- - `deepspeed`: None
302
- - `label_smoothing_factor`: 0.0
303
- - `optim`: adamw_torch
304
- - `optim_args`: None
305
- - `adafactor`: False
306
- - `group_by_length`: False
307
- - `length_column_name`: length
308
- - `ddp_find_unused_parameters`: None
309
- - `ddp_bucket_cap_mb`: None
310
- - `ddp_broadcast_buffers`: False
311
- - `dataloader_pin_memory`: True
312
- - `dataloader_persistent_workers`: False
313
- - `skip_memory_metrics`: True
314
- - `use_legacy_prediction_loop`: False
315
- - `push_to_hub`: False
316
- - `resume_from_checkpoint`: None
317
- - `hub_model_id`: None
318
- - `hub_strategy`: every_save
319
- - `hub_private_repo`: None
320
- - `hub_always_push`: False
321
- - `gradient_checkpointing`: False
322
- - `gradient_checkpointing_kwargs`: None
323
- - `include_inputs_for_metrics`: False
324
- - `include_for_metrics`: []
325
- - `eval_do_concat_batches`: True
326
- - `fp16_backend`: auto
327
- - `push_to_hub_model_id`: None
328
- - `push_to_hub_organization`: None
329
- - `mp_parameters`:
330
- - `auto_find_batch_size`: False
331
- - `full_determinism`: False
332
- - `torchdynamo`: None
333
- - `ray_scope`: last
334
- - `ddp_timeout`: 1800
335
- - `torch_compile`: True
336
- - `torch_compile_backend`: inductor
337
- - `torch_compile_mode`: None
338
- - `dispatch_batches`: None
339
- - `split_batches`: None
340
- - `include_tokens_per_second`: False
341
- - `include_num_input_tokens_seen`: False
342
- - `neftune_noise_alpha`: None
343
- - `optim_target_modules`: None
344
- - `batch_eval_metrics`: False
345
- - `eval_on_start`: False
346
- - `use_liger_kernel`: False
347
- - `eval_use_gather_object`: False
348
- - `average_tokens_across_devices`: False
349
- - `prompts`: None
350
- - `batch_sampler`: no_duplicates
351
- - `multi_dataset_batch_sampler`: proportional
352
-
353
- </details>
354
-
355
- ### Training Logs
356
- | Epoch | Step | Training Loss | Validation Loss | cosine_ap |
357
- |:----------:|:------:|:-------------:|:---------------:|:----------:|
358
- | 0.0323 | 1 | 4.4977 | - | - |
359
- | 0.0645 | 2 | 4.9952 | - | - |
360
- | 0.0968 | 3 | 2.9984 | - | - |
361
- | 0.1290 | 4 | 4.8052 | - | - |
362
- | 0.1613 | 5 | 4.0031 | - | - |
363
- | 0.1935 | 6 | 3.7682 | - | - |
364
- | 0.2258 | 7 | 4.0361 | - | - |
365
- | 0.2581 | 8 | 3.4003 | - | - |
366
- | 0.2903 | 9 | 1.1674 | - | - |
367
- | **0.3226** | **10** | **2.3826** | **14.3756** | **0.9742** |
368
- | 0.3548 | 11 | 3.8777 | - | - |
369
- | 0.3871 | 12 | 2.6367 | - | - |
370
- | 0.4194 | 13 | 2.5763 | - | - |
371
- | 0.4516 | 14 | 3.5591 | - | - |
372
- | 0.4839 | 15 | 2.3568 | - | - |
373
- | 0.5161 | 16 | 2.9432 | - | - |
374
- | 0.5484 | 17 | 2.746 | - | - |
375
- | 0.5806 | 18 | 3.647 | - | - |
376
- | 0.6129 | 19 | 3.0907 | - | - |
377
- | 0.6452 | 20 | 3.9776 | 12.4766 | 0.9771 |
378
- | 0.6774 | 21 | 3.4131 | - | - |
379
- | 0.7097 | 22 | 3.0084 | - | - |
380
- | 0.7419 | 23 | 2.7182 | - | - |
381
- | 0.7742 | 24 | 1.5211 | - | - |
382
- | 0.8065 | 25 | 1.8332 | - | - |
383
- | 0.8387 | 26 | 3.4883 | - | - |
384
- | 0.8710 | 27 | 2.0585 | - | - |
385
- | 0.9032 | 28 | 2.775 | - | - |
386
- | 0.9355 | 29 | 2.9137 | - | - |
387
- | 0.9677 | 30 | 2.4238 | 12.4805 | 0.9769 |
388
- | 1.0 | 31 | 1.2115 | 14.3756 | 0.9742 |
389
-
390
- * The bold row denotes the saved checkpoint.
391
-
392
- ### Framework Versions
393
- - Python: 3.11.11
394
- - Sentence Transformers: 3.4.1
395
- - Transformers: 4.49.0
396
- - PyTorch: 2.5.1+cu124
397
- - Accelerate: 1.4.0
398
- - Datasets: 3.3.2
399
- - Tokenizers: 0.21.0
400
 
401
  ## Citation
402
 
@@ -404,33 +135,14 @@ You can finetune this model on your own dataset.
404
 
405
  #### Sentence Transformers
406
  ```bibtex
407
- @inproceedings{reimers-2019-sentence-bert,
408
- title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
409
- author = "Reimers, Nils and Gurevych, Iryna",
410
- booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
411
- month = "11",
412
- year = "2019",
413
- publisher = "Association for Computational Linguistics",
414
- url = "https://arxiv.org/abs/1908.10084",
415
  }
416
  ```
417
 
418
-
419
-
420
  <!--
421
- ## Glossary
422
-
423
- *Clearly define terms in order to be accessible across audiences.*
424
- -->
425
-
426
- <!--
427
- ## Model Card Authors
428
-
429
- *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
430
- -->
431
-
432
- <!--
433
- ## Model Card Contact
434
-
435
- *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
436
- -->
 
2
  tags:
3
  - sentence-transformers
4
  - sentence-similarity
 
 
 
 
5
  - loss:OnlineContrastiveLoss
6
  base_model: Alibaba-NLP/gte-modernbert-base
 
7
  pipeline_tag: sentence-similarity
8
  library_name: sentence-transformers
9
  metrics:
10
  - cosine_accuracy
 
 
 
11
  - cosine_precision
12
  - cosine_recall
13
+ - cosine_f1
14
  - cosine_ap
 
15
  model-index:
16
  - name: SentenceTransformer based on Alibaba-NLP/gte-modernbert-base
17
  results:
 
19
  type: my-binary-classification
20
  name: My Binary Classification
21
  dataset:
22
+ name: Quora
23
  type: unknown
24
  metrics:
25
  - type: cosine_accuracy
26
+ value:
27
  name: Cosine Accuracy
 
 
 
28
  - type: cosine_f1
29
+ value:
30
  name: Cosine F1
 
 
 
31
  - type: cosine_precision
32
+ value:
33
  name: Cosine Precision
34
  - type: cosine_recall
35
+ value:
36
  name: Cosine Recall
37
  - type: cosine_ap
38
+ value:
39
  name: Cosine Ap
 
 
 
40
  ---
41
 
42
  # SentenceTransformer based on Alibaba-NLP/gte-modernbert-base
43
 
44
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Alibaba-NLP/gte-modernbert-base](https://huggingface.co/Alibaba-NLP/gte-modernbert-base) on the Quora csv dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity for the purpose of semantic caching.
45
 
46
  ## Model Details
47
 
 
52
  - **Output Dimensionality:** 768 dimensions
53
  - **Similarity Function:** Cosine Similarity
54
  - **Training Dataset:**
55
+ - Quora csv
56
  <!-- - **Language:** Unknown -->
57
  <!-- - **License:** Unknown -->
58
 
 
66
 
67
  ```
68
  SentenceTransformer(
69
+ (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: ModernBertModel
70
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
71
  )
72
  ```
73
 
74
  ## Usage
75
 
 
 
76
  First install the Sentence Transformers library:
77
 
78
  ```bash
 
84
  from sentence_transformers import SentenceTransformer
85
 
86
  # Download from the 🤗 Hub
87
+ model = SentenceTransformer("redis/langcache-embed-v1")
88
  # Run inference
89
  sentences = [
90
+ 'Will the value of Indian rupee increase after the ban of 500 and 1000 rupee notes?',
91
+ 'What will be the implications of banning 500 and 1000 rupees currency notes on Indian economy?',
92
+ "Are Danish Sait's prank calls fake?",
93
  ]
94
  embeddings = model.encode(sentences)
95
  print(embeddings.shape)
 
98
  # Get the similarity scores for the embeddings
99
  similarities = model.similarity(embeddings, embeddings)
100
  print(similarities.shape)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
101
 
102
+ ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
103
 
104
+ #### Binary Classification
 
105
 
 
 
106
 
107
+ | Metric | Value |
108
+ |:--------------------------|:----------|
109
+ | cosine_accuracy | |
110
+ | cosine_f1 | |
111
+ | cosine_precision | |
112
+ | cosine_recall | |
113
+ | **cosine_ap** | |
114
 
 
115
 
116
  ### Training Dataset
117
 
118
  #### csv
119
 
120
  * Dataset: csv
121
+ * Size: training samples
122
  * Columns: <code>question_1</code>, <code>question_2</code>, and <code>label</code>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
123
 
124
  ### Evaluation Dataset
125
 
126
  #### csv
127
 
128
  * Dataset: csv
129
+ * Size: evaluation samples
130
+ * Columns: <code>question_1</code>, <code>question_2</code>, and <code>label</code>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
131
 
132
  ## Citation
133
 
 
135
 
136
  #### Sentence Transformers
137
  ```bibtex
138
+ @inproceedings{redisetal.,
139
+ title = "",
140
+ author = "",
141
+ month = "",
142
+ year = "",
143
+ publisher = "",
144
+ url = "",
 
145
  }
146
  ```
147
 
 
 
148
  <!--