Updated README to a bare minimum template (#4)
Browse files- Updated README file to a bare minimum template (2a034cf42ffe0248c3b7f6197a4f38ad66a0d7aa)
README.md
CHANGED
@@ -2,24 +2,16 @@
|
|
2 |
tags:
|
3 |
- sentence-transformers
|
4 |
- sentence-similarity
|
5 |
-
- feature-extraction
|
6 |
-
- generated_from_trainer
|
7 |
-
- dataset_size:2438
|
8 |
-
- loss:MatryoshkaLoss
|
9 |
- loss:OnlineContrastiveLoss
|
10 |
base_model: Alibaba-NLP/gte-modernbert-base
|
11 |
-
|
12 |
pipeline_tag: sentence-similarity
|
13 |
library_name: sentence-transformers
|
14 |
metrics:
|
15 |
- cosine_accuracy
|
16 |
-
- cosine_accuracy_threshold
|
17 |
-
- cosine_f1
|
18 |
-
- cosine_f1_threshold
|
19 |
- cosine_precision
|
20 |
- cosine_recall
|
|
|
21 |
- cosine_ap
|
22 |
-
- cosine_mcc
|
23 |
model-index:
|
24 |
- name: SentenceTransformer based on Alibaba-NLP/gte-modernbert-base
|
25 |
results:
|
@@ -27,38 +19,29 @@ model-index:
|
|
27 |
type: my-binary-classification
|
28 |
name: My Binary Classification
|
29 |
dataset:
|
30 |
-
name:
|
31 |
type: unknown
|
32 |
metrics:
|
33 |
- type: cosine_accuracy
|
34 |
-
value:
|
35 |
name: Cosine Accuracy
|
36 |
-
- type: cosine_accuracy_threshold
|
37 |
-
value: 0.8090976476669312
|
38 |
-
name: Cosine Accuracy Threshold
|
39 |
- type: cosine_f1
|
40 |
-
value:
|
41 |
name: Cosine F1
|
42 |
-
- type: cosine_f1_threshold
|
43 |
-
value: 0.8090976476669312
|
44 |
-
name: Cosine F1 Threshold
|
45 |
- type: cosine_precision
|
46 |
-
value:
|
47 |
name: Cosine Precision
|
48 |
- type: cosine_recall
|
49 |
-
value:
|
50 |
name: Cosine Recall
|
51 |
- type: cosine_ap
|
52 |
-
value:
|
53 |
name: Cosine Ap
|
54 |
-
- type: cosine_mcc
|
55 |
-
value: 0.8312925398469787
|
56 |
-
name: Cosine Mcc
|
57 |
---
|
58 |
|
59 |
# SentenceTransformer based on Alibaba-NLP/gte-modernbert-base
|
60 |
|
61 |
-
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Alibaba-NLP/gte-modernbert-base](https://huggingface.co/Alibaba-NLP/gte-modernbert-base) on the csv dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity
|
62 |
|
63 |
## Model Details
|
64 |
|
@@ -69,7 +52,7 @@ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [A
|
|
69 |
- **Output Dimensionality:** 768 dimensions
|
70 |
- **Similarity Function:** Cosine Similarity
|
71 |
- **Training Dataset:**
|
72 |
-
- csv
|
73 |
<!-- - **Language:** Unknown -->
|
74 |
<!-- - **License:** Unknown -->
|
75 |
|
@@ -83,15 +66,13 @@ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [A
|
|
83 |
|
84 |
```
|
85 |
SentenceTransformer(
|
86 |
-
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: ModernBertModel
|
87 |
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
88 |
)
|
89 |
```
|
90 |
|
91 |
## Usage
|
92 |
|
93 |
-
### Direct Usage (Sentence Transformers)
|
94 |
-
|
95 |
First install the Sentence Transformers library:
|
96 |
|
97 |
```bash
|
@@ -103,12 +84,12 @@ Then you can load this model and run inference.
|
|
103 |
from sentence_transformers import SentenceTransformer
|
104 |
|
105 |
# Download from the 🤗 Hub
|
106 |
-
model = SentenceTransformer("
|
107 |
# Run inference
|
108 |
sentences = [
|
109 |
-
'
|
110 |
-
|
111 |
-
|
112 |
]
|
113 |
embeddings = model.encode(sentences)
|
114 |
print(embeddings.shape)
|
@@ -117,286 +98,36 @@ print(embeddings.shape)
|
|
117 |
# Get the similarity scores for the embeddings
|
118 |
similarities = model.similarity(embeddings, embeddings)
|
119 |
print(similarities.shape)
|
120 |
-
# [3, 3]
|
121 |
-
```
|
122 |
-
|
123 |
-
<!--
|
124 |
-
### Direct Usage (Transformers)
|
125 |
-
|
126 |
-
<details><summary>Click to see the direct usage in Transformers</summary>
|
127 |
-
|
128 |
-
</details>
|
129 |
-
-->
|
130 |
-
|
131 |
-
<!--
|
132 |
-
### Downstream Usage (Sentence Transformers)
|
133 |
-
|
134 |
-
You can finetune this model on your own dataset.
|
135 |
|
136 |
-
|
137 |
-
|
138 |
-
</details>
|
139 |
-
-->
|
140 |
-
|
141 |
-
<!--
|
142 |
-
### Out-of-Scope Use
|
143 |
-
|
144 |
-
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
145 |
-
-->
|
146 |
-
|
147 |
-
## Evaluation
|
148 |
-
|
149 |
-
### Metrics
|
150 |
-
|
151 |
-
#### My Binary Classification
|
152 |
-
|
153 |
-
* Evaluated with <code>scache.train.MyBinaryClassificationEvaluator</code>
|
154 |
-
|
155 |
-
| Metric | Value |
|
156 |
-
|:--------------------------|:-----------|
|
157 |
-
| cosine_accuracy | 0.916 |
|
158 |
-
| cosine_accuracy_threshold | 0.8091 |
|
159 |
-
| cosine_f1 | 0.9216 |
|
160 |
-
| cosine_f1_threshold | 0.8091 |
|
161 |
-
| cosine_precision | 0.9305 |
|
162 |
-
| cosine_recall | 0.9129 |
|
163 |
-
| **cosine_ap** | **0.9742** |
|
164 |
-
| cosine_mcc | 0.8313 |
|
165 |
-
|
166 |
-
<!--
|
167 |
-
## Bias, Risks and Limitations
|
168 |
|
169 |
-
|
170 |
-
-->
|
171 |
|
172 |
-
<!--
|
173 |
-
### Recommendations
|
174 |
|
175 |
-
|
176 |
-
|
|
|
|
|
|
|
|
|
|
|
177 |
|
178 |
-
## Training Details
|
179 |
|
180 |
### Training Dataset
|
181 |
|
182 |
#### csv
|
183 |
|
184 |
* Dataset: csv
|
185 |
-
* Size:
|
186 |
* Columns: <code>question_1</code>, <code>question_2</code>, and <code>label</code>
|
187 |
-
* Approximate statistics based on the first 1000 samples:
|
188 |
-
|
189 |
-
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
|
190 |
-
```json
|
191 |
-
{
|
192 |
-
"loss": "OnlineContrastiveLoss",
|
193 |
-
"matryoshka_dims": [
|
194 |
-
768,
|
195 |
-
512,
|
196 |
-
256,
|
197 |
-
128,
|
198 |
-
64
|
199 |
-
],
|
200 |
-
"matryoshka_weights": [
|
201 |
-
1,
|
202 |
-
1,
|
203 |
-
1,
|
204 |
-
1,
|
205 |
-
1
|
206 |
-
],
|
207 |
-
"n_dims_per_step": -1
|
208 |
-
}
|
209 |
-
```
|
210 |
|
211 |
### Evaluation Dataset
|
212 |
|
213 |
#### csv
|
214 |
|
215 |
* Dataset: csv
|
216 |
-
* Size:
|
217 |
-
|
218 |
-
|
219 |
-
### Training Hyperparameters
|
220 |
-
#### Non-Default Hyperparameters
|
221 |
-
|
222 |
-
- `eval_strategy`: steps
|
223 |
-
- `per_device_train_batch_size`: 16
|
224 |
-
- `per_device_eval_batch_size`: 256
|
225 |
-
- `learning_rate`: 6.5383156211679e-05
|
226 |
-
- `max_grad_norm`: 0.5
|
227 |
-
- `num_train_epochs`: 1
|
228 |
-
- `lr_scheduler_type`: constant
|
229 |
-
- `load_best_model_at_end`: True
|
230 |
-
- `torch_compile`: True
|
231 |
-
- `torch_compile_backend`: inductor
|
232 |
-
- `batch_sampler`: no_duplicates
|
233 |
-
|
234 |
-
#### All Hyperparameters
|
235 |
-
<details><summary>Click to expand</summary>
|
236 |
-
|
237 |
-
- `overwrite_output_dir`: False
|
238 |
-
- `do_predict`: False
|
239 |
-
- `eval_strategy`: steps
|
240 |
-
- `prediction_loss_only`: True
|
241 |
-
- `per_device_train_batch_size`: 16
|
242 |
-
- `per_device_eval_batch_size`: 256
|
243 |
-
- `per_gpu_train_batch_size`: None
|
244 |
-
- `per_gpu_eval_batch_size`: None
|
245 |
-
- `gradient_accumulation_steps`: 1
|
246 |
-
- `eval_accumulation_steps`: None
|
247 |
-
- `torch_empty_cache_steps`: None
|
248 |
-
- `learning_rate`: 6.5383156211679e-05
|
249 |
-
- `weight_decay`: 0.0
|
250 |
-
- `adam_beta1`: 0.9
|
251 |
-
- `adam_beta2`: 0.999
|
252 |
-
- `adam_epsilon`: 1e-08
|
253 |
-
- `max_grad_norm`: 0.5
|
254 |
-
- `num_train_epochs`: 1
|
255 |
-
- `max_steps`: -1
|
256 |
-
- `lr_scheduler_type`: constant
|
257 |
-
- `lr_scheduler_kwargs`: {}
|
258 |
-
- `warmup_ratio`: 0.0
|
259 |
-
- `warmup_steps`: 0
|
260 |
-
- `log_level`: passive
|
261 |
-
- `log_level_replica`: warning
|
262 |
-
- `log_on_each_node`: True
|
263 |
-
- `logging_nan_inf_filter`: True
|
264 |
-
- `save_safetensors`: True
|
265 |
-
- `save_on_each_node`: False
|
266 |
-
- `save_only_model`: False
|
267 |
-
- `restore_callback_states_from_checkpoint`: False
|
268 |
-
- `no_cuda`: False
|
269 |
-
- `use_cpu`: False
|
270 |
-
- `use_mps_device`: False
|
271 |
-
- `seed`: 42
|
272 |
-
- `data_seed`: None
|
273 |
-
- `jit_mode_eval`: False
|
274 |
-
- `use_ipex`: False
|
275 |
-
- `bf16`: False
|
276 |
-
- `fp16`: False
|
277 |
-
- `fp16_opt_level`: O1
|
278 |
-
- `half_precision_backend`: auto
|
279 |
-
- `bf16_full_eval`: False
|
280 |
-
- `fp16_full_eval`: False
|
281 |
-
- `tf32`: None
|
282 |
-
- `local_rank`: 0
|
283 |
-
- `ddp_backend`: None
|
284 |
-
- `tpu_num_cores`: None
|
285 |
-
- `tpu_metrics_debug`: False
|
286 |
-
- `debug`: []
|
287 |
-
- `dataloader_drop_last`: False
|
288 |
-
- `dataloader_num_workers`: 0
|
289 |
-
- `dataloader_prefetch_factor`: None
|
290 |
-
- `past_index`: -1
|
291 |
-
- `disable_tqdm`: False
|
292 |
-
- `remove_unused_columns`: True
|
293 |
-
- `label_names`: None
|
294 |
-
- `load_best_model_at_end`: True
|
295 |
-
- `ignore_data_skip`: False
|
296 |
-
- `fsdp`: []
|
297 |
-
- `fsdp_min_num_params`: 0
|
298 |
-
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
299 |
-
- `fsdp_transformer_layer_cls_to_wrap`: None
|
300 |
-
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
301 |
-
- `deepspeed`: None
|
302 |
-
- `label_smoothing_factor`: 0.0
|
303 |
-
- `optim`: adamw_torch
|
304 |
-
- `optim_args`: None
|
305 |
-
- `adafactor`: False
|
306 |
-
- `group_by_length`: False
|
307 |
-
- `length_column_name`: length
|
308 |
-
- `ddp_find_unused_parameters`: None
|
309 |
-
- `ddp_bucket_cap_mb`: None
|
310 |
-
- `ddp_broadcast_buffers`: False
|
311 |
-
- `dataloader_pin_memory`: True
|
312 |
-
- `dataloader_persistent_workers`: False
|
313 |
-
- `skip_memory_metrics`: True
|
314 |
-
- `use_legacy_prediction_loop`: False
|
315 |
-
- `push_to_hub`: False
|
316 |
-
- `resume_from_checkpoint`: None
|
317 |
-
- `hub_model_id`: None
|
318 |
-
- `hub_strategy`: every_save
|
319 |
-
- `hub_private_repo`: None
|
320 |
-
- `hub_always_push`: False
|
321 |
-
- `gradient_checkpointing`: False
|
322 |
-
- `gradient_checkpointing_kwargs`: None
|
323 |
-
- `include_inputs_for_metrics`: False
|
324 |
-
- `include_for_metrics`: []
|
325 |
-
- `eval_do_concat_batches`: True
|
326 |
-
- `fp16_backend`: auto
|
327 |
-
- `push_to_hub_model_id`: None
|
328 |
-
- `push_to_hub_organization`: None
|
329 |
-
- `mp_parameters`:
|
330 |
-
- `auto_find_batch_size`: False
|
331 |
-
- `full_determinism`: False
|
332 |
-
- `torchdynamo`: None
|
333 |
-
- `ray_scope`: last
|
334 |
-
- `ddp_timeout`: 1800
|
335 |
-
- `torch_compile`: True
|
336 |
-
- `torch_compile_backend`: inductor
|
337 |
-
- `torch_compile_mode`: None
|
338 |
-
- `dispatch_batches`: None
|
339 |
-
- `split_batches`: None
|
340 |
-
- `include_tokens_per_second`: False
|
341 |
-
- `include_num_input_tokens_seen`: False
|
342 |
-
- `neftune_noise_alpha`: None
|
343 |
-
- `optim_target_modules`: None
|
344 |
-
- `batch_eval_metrics`: False
|
345 |
-
- `eval_on_start`: False
|
346 |
-
- `use_liger_kernel`: False
|
347 |
-
- `eval_use_gather_object`: False
|
348 |
-
- `average_tokens_across_devices`: False
|
349 |
-
- `prompts`: None
|
350 |
-
- `batch_sampler`: no_duplicates
|
351 |
-
- `multi_dataset_batch_sampler`: proportional
|
352 |
-
|
353 |
-
</details>
|
354 |
-
|
355 |
-
### Training Logs
|
356 |
-
| Epoch | Step | Training Loss | Validation Loss | cosine_ap |
|
357 |
-
|:----------:|:------:|:-------------:|:---------------:|:----------:|
|
358 |
-
| 0.0323 | 1 | 4.4977 | - | - |
|
359 |
-
| 0.0645 | 2 | 4.9952 | - | - |
|
360 |
-
| 0.0968 | 3 | 2.9984 | - | - |
|
361 |
-
| 0.1290 | 4 | 4.8052 | - | - |
|
362 |
-
| 0.1613 | 5 | 4.0031 | - | - |
|
363 |
-
| 0.1935 | 6 | 3.7682 | - | - |
|
364 |
-
| 0.2258 | 7 | 4.0361 | - | - |
|
365 |
-
| 0.2581 | 8 | 3.4003 | - | - |
|
366 |
-
| 0.2903 | 9 | 1.1674 | - | - |
|
367 |
-
| **0.3226** | **10** | **2.3826** | **14.3756** | **0.9742** |
|
368 |
-
| 0.3548 | 11 | 3.8777 | - | - |
|
369 |
-
| 0.3871 | 12 | 2.6367 | - | - |
|
370 |
-
| 0.4194 | 13 | 2.5763 | - | - |
|
371 |
-
| 0.4516 | 14 | 3.5591 | - | - |
|
372 |
-
| 0.4839 | 15 | 2.3568 | - | - |
|
373 |
-
| 0.5161 | 16 | 2.9432 | - | - |
|
374 |
-
| 0.5484 | 17 | 2.746 | - | - |
|
375 |
-
| 0.5806 | 18 | 3.647 | - | - |
|
376 |
-
| 0.6129 | 19 | 3.0907 | - | - |
|
377 |
-
| 0.6452 | 20 | 3.9776 | 12.4766 | 0.9771 |
|
378 |
-
| 0.6774 | 21 | 3.4131 | - | - |
|
379 |
-
| 0.7097 | 22 | 3.0084 | - | - |
|
380 |
-
| 0.7419 | 23 | 2.7182 | - | - |
|
381 |
-
| 0.7742 | 24 | 1.5211 | - | - |
|
382 |
-
| 0.8065 | 25 | 1.8332 | - | - |
|
383 |
-
| 0.8387 | 26 | 3.4883 | - | - |
|
384 |
-
| 0.8710 | 27 | 2.0585 | - | - |
|
385 |
-
| 0.9032 | 28 | 2.775 | - | - |
|
386 |
-
| 0.9355 | 29 | 2.9137 | - | - |
|
387 |
-
| 0.9677 | 30 | 2.4238 | 12.4805 | 0.9769 |
|
388 |
-
| 1.0 | 31 | 1.2115 | 14.3756 | 0.9742 |
|
389 |
-
|
390 |
-
* The bold row denotes the saved checkpoint.
|
391 |
-
|
392 |
-
### Framework Versions
|
393 |
-
- Python: 3.11.11
|
394 |
-
- Sentence Transformers: 3.4.1
|
395 |
-
- Transformers: 4.49.0
|
396 |
-
- PyTorch: 2.5.1+cu124
|
397 |
-
- Accelerate: 1.4.0
|
398 |
-
- Datasets: 3.3.2
|
399 |
-
- Tokenizers: 0.21.0
|
400 |
|
401 |
## Citation
|
402 |
|
@@ -404,33 +135,14 @@ You can finetune this model on your own dataset.
|
|
404 |
|
405 |
#### Sentence Transformers
|
406 |
```bibtex
|
407 |
-
@inproceedings{
|
408 |
-
title = "
|
409 |
-
author = "
|
410 |
-
|
411 |
-
|
412 |
-
|
413 |
-
|
414 |
-
url = "https://arxiv.org/abs/1908.10084",
|
415 |
}
|
416 |
```
|
417 |
|
418 |
-
|
419 |
-
|
420 |
<!--
|
421 |
-
## Glossary
|
422 |
-
|
423 |
-
*Clearly define terms in order to be accessible across audiences.*
|
424 |
-
-->
|
425 |
-
|
426 |
-
<!--
|
427 |
-
## Model Card Authors
|
428 |
-
|
429 |
-
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
430 |
-
-->
|
431 |
-
|
432 |
-
<!--
|
433 |
-
## Model Card Contact
|
434 |
-
|
435 |
-
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
436 |
-
-->
|
|
|
2 |
tags:
|
3 |
- sentence-transformers
|
4 |
- sentence-similarity
|
|
|
|
|
|
|
|
|
5 |
- loss:OnlineContrastiveLoss
|
6 |
base_model: Alibaba-NLP/gte-modernbert-base
|
|
|
7 |
pipeline_tag: sentence-similarity
|
8 |
library_name: sentence-transformers
|
9 |
metrics:
|
10 |
- cosine_accuracy
|
|
|
|
|
|
|
11 |
- cosine_precision
|
12 |
- cosine_recall
|
13 |
+
- cosine_f1
|
14 |
- cosine_ap
|
|
|
15 |
model-index:
|
16 |
- name: SentenceTransformer based on Alibaba-NLP/gte-modernbert-base
|
17 |
results:
|
|
|
19 |
type: my-binary-classification
|
20 |
name: My Binary Classification
|
21 |
dataset:
|
22 |
+
name: Quora
|
23 |
type: unknown
|
24 |
metrics:
|
25 |
- type: cosine_accuracy
|
26 |
+
value:
|
27 |
name: Cosine Accuracy
|
|
|
|
|
|
|
28 |
- type: cosine_f1
|
29 |
+
value:
|
30 |
name: Cosine F1
|
|
|
|
|
|
|
31 |
- type: cosine_precision
|
32 |
+
value:
|
33 |
name: Cosine Precision
|
34 |
- type: cosine_recall
|
35 |
+
value:
|
36 |
name: Cosine Recall
|
37 |
- type: cosine_ap
|
38 |
+
value:
|
39 |
name: Cosine Ap
|
|
|
|
|
|
|
40 |
---
|
41 |
|
42 |
# SentenceTransformer based on Alibaba-NLP/gte-modernbert-base
|
43 |
|
44 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Alibaba-NLP/gte-modernbert-base](https://huggingface.co/Alibaba-NLP/gte-modernbert-base) on the Quora csv dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity for the purpose of semantic caching.
|
45 |
|
46 |
## Model Details
|
47 |
|
|
|
52 |
- **Output Dimensionality:** 768 dimensions
|
53 |
- **Similarity Function:** Cosine Similarity
|
54 |
- **Training Dataset:**
|
55 |
+
- Quora csv
|
56 |
<!-- - **Language:** Unknown -->
|
57 |
<!-- - **License:** Unknown -->
|
58 |
|
|
|
66 |
|
67 |
```
|
68 |
SentenceTransformer(
|
69 |
+
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: ModernBertModel
|
70 |
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
71 |
)
|
72 |
```
|
73 |
|
74 |
## Usage
|
75 |
|
|
|
|
|
76 |
First install the Sentence Transformers library:
|
77 |
|
78 |
```bash
|
|
|
84 |
from sentence_transformers import SentenceTransformer
|
85 |
|
86 |
# Download from the 🤗 Hub
|
87 |
+
model = SentenceTransformer("redis/langcache-embed-v1")
|
88 |
# Run inference
|
89 |
sentences = [
|
90 |
+
'Will the value of Indian rupee increase after the ban of 500 and 1000 rupee notes?',
|
91 |
+
'What will be the implications of banning 500 and 1000 rupees currency notes on Indian economy?',
|
92 |
+
"Are Danish Sait's prank calls fake?",
|
93 |
]
|
94 |
embeddings = model.encode(sentences)
|
95 |
print(embeddings.shape)
|
|
|
98 |
# Get the similarity scores for the embeddings
|
99 |
similarities = model.similarity(embeddings, embeddings)
|
100 |
print(similarities.shape)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
|
102 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
|
104 |
+
#### Binary Classification
|
|
|
105 |
|
|
|
|
|
106 |
|
107 |
+
| Metric | Value |
|
108 |
+
|:--------------------------|:----------|
|
109 |
+
| cosine_accuracy | |
|
110 |
+
| cosine_f1 | |
|
111 |
+
| cosine_precision | |
|
112 |
+
| cosine_recall | |
|
113 |
+
| **cosine_ap** | |
|
114 |
|
|
|
115 |
|
116 |
### Training Dataset
|
117 |
|
118 |
#### csv
|
119 |
|
120 |
* Dataset: csv
|
121 |
+
* Size: training samples
|
122 |
* Columns: <code>question_1</code>, <code>question_2</code>, and <code>label</code>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
123 |
|
124 |
### Evaluation Dataset
|
125 |
|
126 |
#### csv
|
127 |
|
128 |
* Dataset: csv
|
129 |
+
* Size: evaluation samples
|
130 |
+
* Columns: <code>question_1</code>, <code>question_2</code>, and <code>label</code>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
131 |
|
132 |
## Citation
|
133 |
|
|
|
135 |
|
136 |
#### Sentence Transformers
|
137 |
```bibtex
|
138 |
+
@inproceedings{redisetal.,
|
139 |
+
title = "",
|
140 |
+
author = "",
|
141 |
+
month = "",
|
142 |
+
year = "",
|
143 |
+
publisher = "",
|
144 |
+
url = "",
|
|
|
145 |
}
|
146 |
```
|
147 |
|
|
|
|
|
148 |
<!--
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|