Commit
·
2b7e528
1
Parent(s):
2ee6fc9
Create tensorflow_train.py
Browse files- tensorflow_train.py +448 -0
tensorflow_train.py
ADDED
@@ -0,0 +1,448 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (C) 2021-2024, Mindee.
|
2 |
+
|
3 |
+
# This program is licensed under the Apache License 2.0.
|
4 |
+
# See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details.
|
5 |
+
|
6 |
+
import os
|
7 |
+
|
8 |
+
os.environ["USE_TF"] = "1"
|
9 |
+
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2"
|
10 |
+
|
11 |
+
import datetime
|
12 |
+
import hashlib
|
13 |
+
import multiprocessing as mp
|
14 |
+
import time
|
15 |
+
from pathlib import Path
|
16 |
+
|
17 |
+
import numpy as np
|
18 |
+
import tensorflow as tf
|
19 |
+
from tensorflow.keras import mixed_precision
|
20 |
+
from tqdm.auto import tqdm
|
21 |
+
|
22 |
+
from doctr.models import login_to_hub, push_to_hf_hub
|
23 |
+
|
24 |
+
gpu_devices = tf.config.experimental.list_physical_devices("GPU")
|
25 |
+
if any(gpu_devices):
|
26 |
+
tf.config.experimental.set_memory_growth(gpu_devices[0], True)
|
27 |
+
|
28 |
+
from doctr import transforms as T
|
29 |
+
from doctr.datasets import VOCABS, DataLoader, RecognitionDataset, WordGenerator
|
30 |
+
from doctr.models import recognition
|
31 |
+
from doctr.utils.metrics import TextMatch
|
32 |
+
from utils import EarlyStopper, plot_recorder, plot_samples
|
33 |
+
|
34 |
+
|
35 |
+
def record_lr(
|
36 |
+
model: tf.keras.Model,
|
37 |
+
train_loader: DataLoader,
|
38 |
+
batch_transforms,
|
39 |
+
optimizer,
|
40 |
+
start_lr: float = 1e-7,
|
41 |
+
end_lr: float = 1,
|
42 |
+
num_it: int = 100,
|
43 |
+
amp: bool = False,
|
44 |
+
):
|
45 |
+
"""Gridsearch the optimal learning rate for the training.
|
46 |
+
Adapted from https://github.com/frgfm/Holocron/blob/master/holocron/trainer/core.py
|
47 |
+
"""
|
48 |
+
if num_it > len(train_loader):
|
49 |
+
raise ValueError("the value of `num_it` needs to be lower than the number of available batches")
|
50 |
+
|
51 |
+
# Update param groups & LR
|
52 |
+
gamma = (end_lr / start_lr) ** (1 / (num_it - 1))
|
53 |
+
optimizer.learning_rate = start_lr
|
54 |
+
|
55 |
+
lr_recorder = [start_lr * gamma**idx for idx in range(num_it)]
|
56 |
+
loss_recorder = []
|
57 |
+
|
58 |
+
for batch_idx, (images, targets) in enumerate(train_loader):
|
59 |
+
images = batch_transforms(images)
|
60 |
+
|
61 |
+
# Forward, Backward & update
|
62 |
+
with tf.GradientTape() as tape:
|
63 |
+
train_loss = model(images, targets, training=True)["loss"]
|
64 |
+
grads = tape.gradient(train_loss, model.trainable_weights)
|
65 |
+
|
66 |
+
if amp:
|
67 |
+
grads = optimizer.get_unscaled_gradients(grads)
|
68 |
+
optimizer.apply_gradients(zip(grads, model.trainable_weights))
|
69 |
+
|
70 |
+
optimizer.learning_rate = optimizer.learning_rate * gamma
|
71 |
+
|
72 |
+
# Record
|
73 |
+
train_loss = train_loss.numpy()
|
74 |
+
if np.any(np.isnan(train_loss)):
|
75 |
+
if batch_idx == 0:
|
76 |
+
raise ValueError("loss value is NaN or inf.")
|
77 |
+
else:
|
78 |
+
break
|
79 |
+
loss_recorder.append(train_loss.mean())
|
80 |
+
# Stop after the number of iterations
|
81 |
+
if batch_idx + 1 == num_it:
|
82 |
+
break
|
83 |
+
|
84 |
+
return lr_recorder[: len(loss_recorder)], loss_recorder
|
85 |
+
|
86 |
+
|
87 |
+
def fit_one_epoch(model, train_loader, batch_transforms, optimizer, amp=False):
|
88 |
+
train_iter = iter(train_loader)
|
89 |
+
# Iterate over the batches of the dataset
|
90 |
+
pbar = tqdm(train_iter, position=1)
|
91 |
+
for images, targets in pbar:
|
92 |
+
images = batch_transforms(images)
|
93 |
+
|
94 |
+
with tf.GradientTape() as tape:
|
95 |
+
train_loss = model(images, targets, training=True)["loss"]
|
96 |
+
grads = tape.gradient(train_loss, model.trainable_weights)
|
97 |
+
if amp:
|
98 |
+
grads = optimizer.get_unscaled_gradients(grads)
|
99 |
+
optimizer.apply_gradients(zip(grads, model.trainable_weights))
|
100 |
+
|
101 |
+
pbar.set_description(f"Training loss: {train_loss.numpy().mean():.6}")
|
102 |
+
|
103 |
+
|
104 |
+
def evaluate(model, val_loader, batch_transforms, val_metric):
|
105 |
+
# Reset val metric
|
106 |
+
val_metric.reset()
|
107 |
+
# Validation loop
|
108 |
+
val_loss, batch_cnt = 0, 0
|
109 |
+
val_iter = iter(val_loader)
|
110 |
+
for images, targets in tqdm(val_iter):
|
111 |
+
images = batch_transforms(images)
|
112 |
+
out = model(images, targets, return_preds=True, training=False)
|
113 |
+
# Compute metric
|
114 |
+
if len(out["preds"]):
|
115 |
+
words, _ = zip(*out["preds"])
|
116 |
+
else:
|
117 |
+
words = []
|
118 |
+
val_metric.update(targets, words)
|
119 |
+
|
120 |
+
val_loss += out["loss"].numpy().mean()
|
121 |
+
batch_cnt += 1
|
122 |
+
|
123 |
+
val_loss /= batch_cnt
|
124 |
+
result = val_metric.summary()
|
125 |
+
return val_loss, result["raw"], result["unicase"]
|
126 |
+
|
127 |
+
|
128 |
+
def main(args):
|
129 |
+
print(args)
|
130 |
+
|
131 |
+
if args.push_to_hub:
|
132 |
+
login_to_hub()
|
133 |
+
|
134 |
+
if not isinstance(args.workers, int):
|
135 |
+
args.workers = min(16, mp.cpu_count())
|
136 |
+
|
137 |
+
vocab = VOCABS[args.vocab]
|
138 |
+
fonts = args.font.split(",")
|
139 |
+
|
140 |
+
# AMP
|
141 |
+
if args.amp:
|
142 |
+
mixed_precision.set_global_policy("mixed_float16")
|
143 |
+
|
144 |
+
st = time.time()
|
145 |
+
|
146 |
+
if isinstance(args.val_path, str):
|
147 |
+
with open(os.path.join(args.val_path, "labels.json"), "rb") as f:
|
148 |
+
val_hash = hashlib.sha256(f.read()).hexdigest()
|
149 |
+
|
150 |
+
# Load val data generator
|
151 |
+
val_set = RecognitionDataset(
|
152 |
+
img_folder=os.path.join(args.val_path, "images"),
|
153 |
+
labels_path=os.path.join(args.val_path, "labels.json"),
|
154 |
+
img_transforms=T.Resize((args.input_size, 4 * args.input_size), preserve_aspect_ratio=True),
|
155 |
+
)
|
156 |
+
else:
|
157 |
+
val_hash = None
|
158 |
+
# Load synthetic data generator
|
159 |
+
val_set = WordGenerator(
|
160 |
+
vocab=vocab,
|
161 |
+
min_chars=args.min_chars,
|
162 |
+
max_chars=args.max_chars,
|
163 |
+
num_samples=args.val_samples * len(vocab),
|
164 |
+
font_family=fonts,
|
165 |
+
img_transforms=T.Compose([
|
166 |
+
T.Resize((args.input_size, 4 * args.input_size), preserve_aspect_ratio=True),
|
167 |
+
# Ensure we have a 90% split of white-background images
|
168 |
+
T.RandomApply(T.ColorInversion(), 0.9),
|
169 |
+
]),
|
170 |
+
)
|
171 |
+
|
172 |
+
val_loader = DataLoader(
|
173 |
+
val_set,
|
174 |
+
batch_size=args.batch_size,
|
175 |
+
shuffle=False,
|
176 |
+
drop_last=False,
|
177 |
+
num_workers=args.workers,
|
178 |
+
)
|
179 |
+
print(
|
180 |
+
f"Validation set loaded in {time.time() - st:.4}s ({len(val_set)} samples in "
|
181 |
+
f"{val_loader.num_batches} batches)"
|
182 |
+
)
|
183 |
+
|
184 |
+
# Load doctr model
|
185 |
+
model = recognition.__dict__[args.arch](
|
186 |
+
pretrained=args.pretrained,
|
187 |
+
input_shape=(args.input_size, 4 * args.input_size, 3),
|
188 |
+
vocab=vocab,
|
189 |
+
)
|
190 |
+
# Resume weights
|
191 |
+
if isinstance(args.resume, str):
|
192 |
+
model.load_weights(args.resume)
|
193 |
+
|
194 |
+
# Metrics
|
195 |
+
val_metric = TextMatch()
|
196 |
+
|
197 |
+
batch_transforms = T.Compose([
|
198 |
+
T.Normalize(mean=(0.694, 0.695, 0.693), std=(0.299, 0.296, 0.301)),
|
199 |
+
])
|
200 |
+
|
201 |
+
if args.test_only:
|
202 |
+
print("Running evaluation")
|
203 |
+
val_loss, exact_match, partial_match = evaluate(model, val_loader, batch_transforms, val_metric)
|
204 |
+
print(f"Validation loss: {val_loss:.6} (Exact: {exact_match:.2%} | Partial: {partial_match:.2%})")
|
205 |
+
return
|
206 |
+
|
207 |
+
st = time.time()
|
208 |
+
|
209 |
+
if isinstance(args.train_path, str):
|
210 |
+
# Load train data generator
|
211 |
+
base_path = Path(args.train_path)
|
212 |
+
parts = (
|
213 |
+
[base_path]
|
214 |
+
if base_path.joinpath("labels.json").is_file()
|
215 |
+
else [base_path.joinpath(sub) for sub in os.listdir(base_path)]
|
216 |
+
)
|
217 |
+
with open(parts[0].joinpath("labels.json"), "rb") as f:
|
218 |
+
train_hash = hashlib.sha256(f.read()).hexdigest()
|
219 |
+
|
220 |
+
train_set = RecognitionDataset(
|
221 |
+
parts[0].joinpath("images"),
|
222 |
+
parts[0].joinpath("labels.json"),
|
223 |
+
img_transforms=T.Compose([
|
224 |
+
T.Resize((args.input_size, 4 * args.input_size), preserve_aspect_ratio=True),
|
225 |
+
# Augmentations
|
226 |
+
T.RandomApply(T.ColorInversion(), 0.1),
|
227 |
+
T.RandomApply(T.ToGray(num_output_channels=3), 0.1),
|
228 |
+
T.RandomJpegQuality(60),
|
229 |
+
T.RandomSaturation(0.3),
|
230 |
+
T.RandomContrast(0.3),
|
231 |
+
T.RandomBrightness(0.3),
|
232 |
+
T.RandomApply(T.RandomShadow(), 0.4),
|
233 |
+
T.RandomApply(T.GaussianNoise(mean=0.1, std=0.1), 0.1),
|
234 |
+
T.RandomApply(T.GaussianBlur(kernel_shape=3, std=(0.1, 0.1)), 0.3),
|
235 |
+
]),
|
236 |
+
)
|
237 |
+
if len(parts) > 1:
|
238 |
+
for subfolder in parts[1:]:
|
239 |
+
train_set.merge_dataset(
|
240 |
+
RecognitionDataset(subfolder.joinpath("images"), subfolder.joinpath("labels.json"))
|
241 |
+
)
|
242 |
+
else:
|
243 |
+
train_hash = None
|
244 |
+
# Load synthetic data generator
|
245 |
+
train_set = WordGenerator(
|
246 |
+
vocab=vocab,
|
247 |
+
min_chars=args.min_chars,
|
248 |
+
max_chars=args.max_chars,
|
249 |
+
num_samples=args.train_samples * len(vocab),
|
250 |
+
font_family=fonts,
|
251 |
+
img_transforms=T.Compose([
|
252 |
+
T.Resize((args.input_size, 4 * args.input_size), preserve_aspect_ratio=True),
|
253 |
+
# Ensure we have a 90% split of white-background images
|
254 |
+
T.RandomApply(T.ColorInversion(), 0.9),
|
255 |
+
T.RandomApply(T.ToGray(num_output_channels=3), 0.1),
|
256 |
+
T.RandomJpegQuality(60),
|
257 |
+
T.RandomSaturation(0.3),
|
258 |
+
T.RandomContrast(0.3),
|
259 |
+
T.RandomBrightness(0.3),
|
260 |
+
T.RandomApply(T.RandomShadow(), 0.4),
|
261 |
+
T.RandomApply(T.GaussianNoise(mean=0.1, std=0.1), 0.1),
|
262 |
+
T.RandomApply(T.GaussianBlur(kernel_shape=3, std=(0.1, 0.1)), 0.3),
|
263 |
+
]),
|
264 |
+
)
|
265 |
+
|
266 |
+
train_loader = DataLoader(
|
267 |
+
train_set,
|
268 |
+
batch_size=args.batch_size,
|
269 |
+
shuffle=True,
|
270 |
+
drop_last=True,
|
271 |
+
num_workers=args.workers,
|
272 |
+
)
|
273 |
+
print(
|
274 |
+
f"Train set loaded in {time.time() - st:.4}s ({len(train_set)} samples in "
|
275 |
+
f"{train_loader.num_batches} batches)"
|
276 |
+
)
|
277 |
+
|
278 |
+
if args.show_samples:
|
279 |
+
x, target = next(iter(train_loader))
|
280 |
+
plot_samples(x, target)
|
281 |
+
return
|
282 |
+
|
283 |
+
# Optimizer
|
284 |
+
scheduler = tf.keras.optimizers.schedules.ExponentialDecay(
|
285 |
+
args.lr,
|
286 |
+
decay_steps=args.epochs * len(train_loader),
|
287 |
+
decay_rate=1 / (25e4), # final lr as a fraction of initial lr
|
288 |
+
staircase=False,
|
289 |
+
name="ExponentialDecay",
|
290 |
+
)
|
291 |
+
optimizer = tf.keras.optimizers.Adam(learning_rate=scheduler, beta_1=0.95, beta_2=0.99, epsilon=1e-6, clipnorm=5)
|
292 |
+
if args.amp:
|
293 |
+
optimizer = mixed_precision.LossScaleOptimizer(optimizer)
|
294 |
+
# LR Finder
|
295 |
+
if args.find_lr:
|
296 |
+
lrs, losses = record_lr(model, train_loader, batch_transforms, optimizer, amp=args.amp)
|
297 |
+
plot_recorder(lrs, losses)
|
298 |
+
return
|
299 |
+
|
300 |
+
# Tensorboard to monitor training
|
301 |
+
current_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
|
302 |
+
exp_name = f"{args.arch}_{current_time}" if args.name is None else args.name
|
303 |
+
|
304 |
+
config = {
|
305 |
+
"learning_rate": args.lr,
|
306 |
+
"epochs": args.epochs,
|
307 |
+
"batch_size": args.batch_size,
|
308 |
+
"architecture": args.arch,
|
309 |
+
"input_size": args.input_size,
|
310 |
+
"optimizer": optimizer.name,
|
311 |
+
"framework": "tensorflow",
|
312 |
+
"scheduler": scheduler.name,
|
313 |
+
"vocab": args.vocab,
|
314 |
+
"train_hash": train_hash,
|
315 |
+
"val_hash": val_hash,
|
316 |
+
"pretrained": args.pretrained,
|
317 |
+
}
|
318 |
+
|
319 |
+
# W&B
|
320 |
+
if args.wb:
|
321 |
+
import wandb
|
322 |
+
|
323 |
+
run = wandb.init(
|
324 |
+
name=exp_name,
|
325 |
+
project="text-recognition",
|
326 |
+
config=config,
|
327 |
+
)
|
328 |
+
|
329 |
+
# ClearML
|
330 |
+
if args.clearml:
|
331 |
+
from clearml import Task
|
332 |
+
|
333 |
+
task = Task.init(project_name="docTR/text-recognition", task_name=exp_name, reuse_last_task_id=False)
|
334 |
+
task.upload_artifact("config", config)
|
335 |
+
|
336 |
+
# Backbone freezing
|
337 |
+
if args.freeze_backbone:
|
338 |
+
for layer in model.feat_extractor.layers:
|
339 |
+
layer.trainable = False
|
340 |
+
|
341 |
+
min_loss = np.inf
|
342 |
+
if args.early_stop:
|
343 |
+
early_stopper = EarlyStopper(patience=args.early_stop_epochs, min_delta=args.early_stop_delta)
|
344 |
+
# Training loop
|
345 |
+
for epoch in range(args.epochs):
|
346 |
+
fit_one_epoch(model, train_loader, batch_transforms, optimizer, args.amp)
|
347 |
+
|
348 |
+
# Validation loop at the end of each epoch
|
349 |
+
val_loss, exact_match, partial_match = evaluate(model, val_loader, batch_transforms, val_metric)
|
350 |
+
if val_loss < min_loss:
|
351 |
+
print(f"Validation loss decreased {min_loss:.6} --> {val_loss:.6}: saving state...")
|
352 |
+
model.save_weights(f"./{exp_name}/weights")
|
353 |
+
min_loss = val_loss
|
354 |
+
print(
|
355 |
+
f"Epoch {epoch + 1}/{args.epochs} - Validation loss: {val_loss:.6} "
|
356 |
+
f"(Exact: {exact_match:.2%} | Partial: {partial_match:.2%})"
|
357 |
+
)
|
358 |
+
# W&B
|
359 |
+
if args.wb:
|
360 |
+
wandb.log({
|
361 |
+
"val_loss": val_loss,
|
362 |
+
"exact_match": exact_match,
|
363 |
+
"partial_match": partial_match,
|
364 |
+
})
|
365 |
+
|
366 |
+
# ClearML
|
367 |
+
if args.clearml:
|
368 |
+
from clearml import Logger
|
369 |
+
|
370 |
+
logger = Logger.current_logger()
|
371 |
+
logger.report_scalar(title="Validation Loss", series="val_loss", value=val_loss, iteration=epoch)
|
372 |
+
logger.report_scalar(title="Exact Match", series="exact_match", value=exact_match, iteration=epoch)
|
373 |
+
logger.report_scalar(title="Partial Match", series="partial_match", value=partial_match, iteration=epoch)
|
374 |
+
if args.early_stop and early_stopper.early_stop(val_loss):
|
375 |
+
print("Training halted early due to reaching patience limit.")
|
376 |
+
break
|
377 |
+
if args.wb:
|
378 |
+
run.finish()
|
379 |
+
|
380 |
+
if args.push_to_hub:
|
381 |
+
push_to_hf_hub(model, exp_name, task="recognition", run_config=args)
|
382 |
+
|
383 |
+
|
384 |
+
def parse_args():
|
385 |
+
import argparse
|
386 |
+
|
387 |
+
parser = argparse.ArgumentParser(
|
388 |
+
description="DocTR training script for text recognition (TensorFlow)",
|
389 |
+
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
|
390 |
+
)
|
391 |
+
|
392 |
+
parser.add_argument("arch", type=str, help="text-recognition model to train")
|
393 |
+
parser.add_argument("--train_path", type=str, default=None, help="path to train data folder(s)")
|
394 |
+
parser.add_argument("--val_path", type=str, default=None, help="path to val data folder")
|
395 |
+
parser.add_argument(
|
396 |
+
"--train-samples",
|
397 |
+
type=int,
|
398 |
+
default=1000,
|
399 |
+
help="Multiplied by the vocab length gets you the number of synthetic training samples that will be used.",
|
400 |
+
)
|
401 |
+
parser.add_argument(
|
402 |
+
"--val-samples",
|
403 |
+
type=int,
|
404 |
+
default=20,
|
405 |
+
help="Multiplied by the vocab length gets you the number of synthetic validation samples that will be used.",
|
406 |
+
)
|
407 |
+
parser.add_argument(
|
408 |
+
"--font", type=str, default="FreeMono.ttf,FreeSans.ttf,FreeSerif.ttf", help="Font family to be used"
|
409 |
+
)
|
410 |
+
parser.add_argument("--min-chars", type=int, default=1, help="Minimum number of characters per synthetic sample")
|
411 |
+
parser.add_argument("--max-chars", type=int, default=12, help="Maximum number of characters per synthetic sample")
|
412 |
+
parser.add_argument("--name", type=str, default=None, help="Name of your training experiment")
|
413 |
+
parser.add_argument("--epochs", type=int, default=10, help="number of epochs to train the model on")
|
414 |
+
parser.add_argument("-b", "--batch_size", type=int, default=64, help="batch size for training")
|
415 |
+
parser.add_argument("--input_size", type=int, default=32, help="input size H for the model, W = 4*H")
|
416 |
+
parser.add_argument("--lr", type=float, default=0.001, help="learning rate for the optimizer (Adam)")
|
417 |
+
parser.add_argument("-j", "--workers", type=int, default=None, help="number of workers used for dataloading")
|
418 |
+
parser.add_argument("--resume", type=str, default=None, help="Path to your checkpoint")
|
419 |
+
parser.add_argument("--vocab", type=str, default="french", help="Vocab to be used for training")
|
420 |
+
parser.add_argument("--test-only", dest="test_only", action="store_true", help="Run the validation loop")
|
421 |
+
parser.add_argument(
|
422 |
+
"--freeze-backbone", dest="freeze_backbone", action="store_true", help="freeze model backbone for fine-tuning"
|
423 |
+
)
|
424 |
+
parser.add_argument(
|
425 |
+
"--show-samples", dest="show_samples", action="store_true", help="Display unormalized training samples"
|
426 |
+
)
|
427 |
+
parser.add_argument("--wb", dest="wb", action="store_true", help="Log to Weights & Biases")
|
428 |
+
parser.add_argument("--clearml", dest="clearml", action="store_true", help="Log to ClearML")
|
429 |
+
parser.add_argument("--push-to-hub", dest="push_to_hub", action="store_true", help="Push to Huggingface Hub")
|
430 |
+
parser.add_argument(
|
431 |
+
"--pretrained",
|
432 |
+
dest="pretrained",
|
433 |
+
action="store_true",
|
434 |
+
help="Load pretrained parameters before starting the training",
|
435 |
+
)
|
436 |
+
parser.add_argument("--amp", dest="amp", help="Use Automatic Mixed Precision", action="store_true")
|
437 |
+
parser.add_argument("--find-lr", action="store_true", help="Gridsearch the optimal LR")
|
438 |
+
parser.add_argument("--early-stop", action="store_true", help="Enable early stopping")
|
439 |
+
parser.add_argument("--early-stop-epochs", type=int, default=5, help="Patience for early stopping")
|
440 |
+
parser.add_argument("--early-stop-delta", type=float, default=0.01, help="Minimum Delta for early stopping")
|
441 |
+
args = parser.parse_args()
|
442 |
+
|
443 |
+
return args
|
444 |
+
|
445 |
+
|
446 |
+
if __name__ == "__main__":
|
447 |
+
args = parse_args()
|
448 |
+
main(args)
|