Commit
·
2b7e528
1
Parent(s):
2ee6fc9
Create tensorflow_train.py
Browse files- tensorflow_train.py +448 -0
tensorflow_train.py
ADDED
|
@@ -0,0 +1,448 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (C) 2021-2024, Mindee.
|
| 2 |
+
|
| 3 |
+
# This program is licensed under the Apache License 2.0.
|
| 4 |
+
# See LICENSE or go to <https://opensource.org/licenses/Apache-2.0> for full license details.
|
| 5 |
+
|
| 6 |
+
import os
|
| 7 |
+
|
| 8 |
+
os.environ["USE_TF"] = "1"
|
| 9 |
+
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2"
|
| 10 |
+
|
| 11 |
+
import datetime
|
| 12 |
+
import hashlib
|
| 13 |
+
import multiprocessing as mp
|
| 14 |
+
import time
|
| 15 |
+
from pathlib import Path
|
| 16 |
+
|
| 17 |
+
import numpy as np
|
| 18 |
+
import tensorflow as tf
|
| 19 |
+
from tensorflow.keras import mixed_precision
|
| 20 |
+
from tqdm.auto import tqdm
|
| 21 |
+
|
| 22 |
+
from doctr.models import login_to_hub, push_to_hf_hub
|
| 23 |
+
|
| 24 |
+
gpu_devices = tf.config.experimental.list_physical_devices("GPU")
|
| 25 |
+
if any(gpu_devices):
|
| 26 |
+
tf.config.experimental.set_memory_growth(gpu_devices[0], True)
|
| 27 |
+
|
| 28 |
+
from doctr import transforms as T
|
| 29 |
+
from doctr.datasets import VOCABS, DataLoader, RecognitionDataset, WordGenerator
|
| 30 |
+
from doctr.models import recognition
|
| 31 |
+
from doctr.utils.metrics import TextMatch
|
| 32 |
+
from utils import EarlyStopper, plot_recorder, plot_samples
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
def record_lr(
|
| 36 |
+
model: tf.keras.Model,
|
| 37 |
+
train_loader: DataLoader,
|
| 38 |
+
batch_transforms,
|
| 39 |
+
optimizer,
|
| 40 |
+
start_lr: float = 1e-7,
|
| 41 |
+
end_lr: float = 1,
|
| 42 |
+
num_it: int = 100,
|
| 43 |
+
amp: bool = False,
|
| 44 |
+
):
|
| 45 |
+
"""Gridsearch the optimal learning rate for the training.
|
| 46 |
+
Adapted from https://github.com/frgfm/Holocron/blob/master/holocron/trainer/core.py
|
| 47 |
+
"""
|
| 48 |
+
if num_it > len(train_loader):
|
| 49 |
+
raise ValueError("the value of `num_it` needs to be lower than the number of available batches")
|
| 50 |
+
|
| 51 |
+
# Update param groups & LR
|
| 52 |
+
gamma = (end_lr / start_lr) ** (1 / (num_it - 1))
|
| 53 |
+
optimizer.learning_rate = start_lr
|
| 54 |
+
|
| 55 |
+
lr_recorder = [start_lr * gamma**idx for idx in range(num_it)]
|
| 56 |
+
loss_recorder = []
|
| 57 |
+
|
| 58 |
+
for batch_idx, (images, targets) in enumerate(train_loader):
|
| 59 |
+
images = batch_transforms(images)
|
| 60 |
+
|
| 61 |
+
# Forward, Backward & update
|
| 62 |
+
with tf.GradientTape() as tape:
|
| 63 |
+
train_loss = model(images, targets, training=True)["loss"]
|
| 64 |
+
grads = tape.gradient(train_loss, model.trainable_weights)
|
| 65 |
+
|
| 66 |
+
if amp:
|
| 67 |
+
grads = optimizer.get_unscaled_gradients(grads)
|
| 68 |
+
optimizer.apply_gradients(zip(grads, model.trainable_weights))
|
| 69 |
+
|
| 70 |
+
optimizer.learning_rate = optimizer.learning_rate * gamma
|
| 71 |
+
|
| 72 |
+
# Record
|
| 73 |
+
train_loss = train_loss.numpy()
|
| 74 |
+
if np.any(np.isnan(train_loss)):
|
| 75 |
+
if batch_idx == 0:
|
| 76 |
+
raise ValueError("loss value is NaN or inf.")
|
| 77 |
+
else:
|
| 78 |
+
break
|
| 79 |
+
loss_recorder.append(train_loss.mean())
|
| 80 |
+
# Stop after the number of iterations
|
| 81 |
+
if batch_idx + 1 == num_it:
|
| 82 |
+
break
|
| 83 |
+
|
| 84 |
+
return lr_recorder[: len(loss_recorder)], loss_recorder
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
def fit_one_epoch(model, train_loader, batch_transforms, optimizer, amp=False):
|
| 88 |
+
train_iter = iter(train_loader)
|
| 89 |
+
# Iterate over the batches of the dataset
|
| 90 |
+
pbar = tqdm(train_iter, position=1)
|
| 91 |
+
for images, targets in pbar:
|
| 92 |
+
images = batch_transforms(images)
|
| 93 |
+
|
| 94 |
+
with tf.GradientTape() as tape:
|
| 95 |
+
train_loss = model(images, targets, training=True)["loss"]
|
| 96 |
+
grads = tape.gradient(train_loss, model.trainable_weights)
|
| 97 |
+
if amp:
|
| 98 |
+
grads = optimizer.get_unscaled_gradients(grads)
|
| 99 |
+
optimizer.apply_gradients(zip(grads, model.trainable_weights))
|
| 100 |
+
|
| 101 |
+
pbar.set_description(f"Training loss: {train_loss.numpy().mean():.6}")
|
| 102 |
+
|
| 103 |
+
|
| 104 |
+
def evaluate(model, val_loader, batch_transforms, val_metric):
|
| 105 |
+
# Reset val metric
|
| 106 |
+
val_metric.reset()
|
| 107 |
+
# Validation loop
|
| 108 |
+
val_loss, batch_cnt = 0, 0
|
| 109 |
+
val_iter = iter(val_loader)
|
| 110 |
+
for images, targets in tqdm(val_iter):
|
| 111 |
+
images = batch_transforms(images)
|
| 112 |
+
out = model(images, targets, return_preds=True, training=False)
|
| 113 |
+
# Compute metric
|
| 114 |
+
if len(out["preds"]):
|
| 115 |
+
words, _ = zip(*out["preds"])
|
| 116 |
+
else:
|
| 117 |
+
words = []
|
| 118 |
+
val_metric.update(targets, words)
|
| 119 |
+
|
| 120 |
+
val_loss += out["loss"].numpy().mean()
|
| 121 |
+
batch_cnt += 1
|
| 122 |
+
|
| 123 |
+
val_loss /= batch_cnt
|
| 124 |
+
result = val_metric.summary()
|
| 125 |
+
return val_loss, result["raw"], result["unicase"]
|
| 126 |
+
|
| 127 |
+
|
| 128 |
+
def main(args):
|
| 129 |
+
print(args)
|
| 130 |
+
|
| 131 |
+
if args.push_to_hub:
|
| 132 |
+
login_to_hub()
|
| 133 |
+
|
| 134 |
+
if not isinstance(args.workers, int):
|
| 135 |
+
args.workers = min(16, mp.cpu_count())
|
| 136 |
+
|
| 137 |
+
vocab = VOCABS[args.vocab]
|
| 138 |
+
fonts = args.font.split(",")
|
| 139 |
+
|
| 140 |
+
# AMP
|
| 141 |
+
if args.amp:
|
| 142 |
+
mixed_precision.set_global_policy("mixed_float16")
|
| 143 |
+
|
| 144 |
+
st = time.time()
|
| 145 |
+
|
| 146 |
+
if isinstance(args.val_path, str):
|
| 147 |
+
with open(os.path.join(args.val_path, "labels.json"), "rb") as f:
|
| 148 |
+
val_hash = hashlib.sha256(f.read()).hexdigest()
|
| 149 |
+
|
| 150 |
+
# Load val data generator
|
| 151 |
+
val_set = RecognitionDataset(
|
| 152 |
+
img_folder=os.path.join(args.val_path, "images"),
|
| 153 |
+
labels_path=os.path.join(args.val_path, "labels.json"),
|
| 154 |
+
img_transforms=T.Resize((args.input_size, 4 * args.input_size), preserve_aspect_ratio=True),
|
| 155 |
+
)
|
| 156 |
+
else:
|
| 157 |
+
val_hash = None
|
| 158 |
+
# Load synthetic data generator
|
| 159 |
+
val_set = WordGenerator(
|
| 160 |
+
vocab=vocab,
|
| 161 |
+
min_chars=args.min_chars,
|
| 162 |
+
max_chars=args.max_chars,
|
| 163 |
+
num_samples=args.val_samples * len(vocab),
|
| 164 |
+
font_family=fonts,
|
| 165 |
+
img_transforms=T.Compose([
|
| 166 |
+
T.Resize((args.input_size, 4 * args.input_size), preserve_aspect_ratio=True),
|
| 167 |
+
# Ensure we have a 90% split of white-background images
|
| 168 |
+
T.RandomApply(T.ColorInversion(), 0.9),
|
| 169 |
+
]),
|
| 170 |
+
)
|
| 171 |
+
|
| 172 |
+
val_loader = DataLoader(
|
| 173 |
+
val_set,
|
| 174 |
+
batch_size=args.batch_size,
|
| 175 |
+
shuffle=False,
|
| 176 |
+
drop_last=False,
|
| 177 |
+
num_workers=args.workers,
|
| 178 |
+
)
|
| 179 |
+
print(
|
| 180 |
+
f"Validation set loaded in {time.time() - st:.4}s ({len(val_set)} samples in "
|
| 181 |
+
f"{val_loader.num_batches} batches)"
|
| 182 |
+
)
|
| 183 |
+
|
| 184 |
+
# Load doctr model
|
| 185 |
+
model = recognition.__dict__[args.arch](
|
| 186 |
+
pretrained=args.pretrained,
|
| 187 |
+
input_shape=(args.input_size, 4 * args.input_size, 3),
|
| 188 |
+
vocab=vocab,
|
| 189 |
+
)
|
| 190 |
+
# Resume weights
|
| 191 |
+
if isinstance(args.resume, str):
|
| 192 |
+
model.load_weights(args.resume)
|
| 193 |
+
|
| 194 |
+
# Metrics
|
| 195 |
+
val_metric = TextMatch()
|
| 196 |
+
|
| 197 |
+
batch_transforms = T.Compose([
|
| 198 |
+
T.Normalize(mean=(0.694, 0.695, 0.693), std=(0.299, 0.296, 0.301)),
|
| 199 |
+
])
|
| 200 |
+
|
| 201 |
+
if args.test_only:
|
| 202 |
+
print("Running evaluation")
|
| 203 |
+
val_loss, exact_match, partial_match = evaluate(model, val_loader, batch_transforms, val_metric)
|
| 204 |
+
print(f"Validation loss: {val_loss:.6} (Exact: {exact_match:.2%} | Partial: {partial_match:.2%})")
|
| 205 |
+
return
|
| 206 |
+
|
| 207 |
+
st = time.time()
|
| 208 |
+
|
| 209 |
+
if isinstance(args.train_path, str):
|
| 210 |
+
# Load train data generator
|
| 211 |
+
base_path = Path(args.train_path)
|
| 212 |
+
parts = (
|
| 213 |
+
[base_path]
|
| 214 |
+
if base_path.joinpath("labels.json").is_file()
|
| 215 |
+
else [base_path.joinpath(sub) for sub in os.listdir(base_path)]
|
| 216 |
+
)
|
| 217 |
+
with open(parts[0].joinpath("labels.json"), "rb") as f:
|
| 218 |
+
train_hash = hashlib.sha256(f.read()).hexdigest()
|
| 219 |
+
|
| 220 |
+
train_set = RecognitionDataset(
|
| 221 |
+
parts[0].joinpath("images"),
|
| 222 |
+
parts[0].joinpath("labels.json"),
|
| 223 |
+
img_transforms=T.Compose([
|
| 224 |
+
T.Resize((args.input_size, 4 * args.input_size), preserve_aspect_ratio=True),
|
| 225 |
+
# Augmentations
|
| 226 |
+
T.RandomApply(T.ColorInversion(), 0.1),
|
| 227 |
+
T.RandomApply(T.ToGray(num_output_channels=3), 0.1),
|
| 228 |
+
T.RandomJpegQuality(60),
|
| 229 |
+
T.RandomSaturation(0.3),
|
| 230 |
+
T.RandomContrast(0.3),
|
| 231 |
+
T.RandomBrightness(0.3),
|
| 232 |
+
T.RandomApply(T.RandomShadow(), 0.4),
|
| 233 |
+
T.RandomApply(T.GaussianNoise(mean=0.1, std=0.1), 0.1),
|
| 234 |
+
T.RandomApply(T.GaussianBlur(kernel_shape=3, std=(0.1, 0.1)), 0.3),
|
| 235 |
+
]),
|
| 236 |
+
)
|
| 237 |
+
if len(parts) > 1:
|
| 238 |
+
for subfolder in parts[1:]:
|
| 239 |
+
train_set.merge_dataset(
|
| 240 |
+
RecognitionDataset(subfolder.joinpath("images"), subfolder.joinpath("labels.json"))
|
| 241 |
+
)
|
| 242 |
+
else:
|
| 243 |
+
train_hash = None
|
| 244 |
+
# Load synthetic data generator
|
| 245 |
+
train_set = WordGenerator(
|
| 246 |
+
vocab=vocab,
|
| 247 |
+
min_chars=args.min_chars,
|
| 248 |
+
max_chars=args.max_chars,
|
| 249 |
+
num_samples=args.train_samples * len(vocab),
|
| 250 |
+
font_family=fonts,
|
| 251 |
+
img_transforms=T.Compose([
|
| 252 |
+
T.Resize((args.input_size, 4 * args.input_size), preserve_aspect_ratio=True),
|
| 253 |
+
# Ensure we have a 90% split of white-background images
|
| 254 |
+
T.RandomApply(T.ColorInversion(), 0.9),
|
| 255 |
+
T.RandomApply(T.ToGray(num_output_channels=3), 0.1),
|
| 256 |
+
T.RandomJpegQuality(60),
|
| 257 |
+
T.RandomSaturation(0.3),
|
| 258 |
+
T.RandomContrast(0.3),
|
| 259 |
+
T.RandomBrightness(0.3),
|
| 260 |
+
T.RandomApply(T.RandomShadow(), 0.4),
|
| 261 |
+
T.RandomApply(T.GaussianNoise(mean=0.1, std=0.1), 0.1),
|
| 262 |
+
T.RandomApply(T.GaussianBlur(kernel_shape=3, std=(0.1, 0.1)), 0.3),
|
| 263 |
+
]),
|
| 264 |
+
)
|
| 265 |
+
|
| 266 |
+
train_loader = DataLoader(
|
| 267 |
+
train_set,
|
| 268 |
+
batch_size=args.batch_size,
|
| 269 |
+
shuffle=True,
|
| 270 |
+
drop_last=True,
|
| 271 |
+
num_workers=args.workers,
|
| 272 |
+
)
|
| 273 |
+
print(
|
| 274 |
+
f"Train set loaded in {time.time() - st:.4}s ({len(train_set)} samples in "
|
| 275 |
+
f"{train_loader.num_batches} batches)"
|
| 276 |
+
)
|
| 277 |
+
|
| 278 |
+
if args.show_samples:
|
| 279 |
+
x, target = next(iter(train_loader))
|
| 280 |
+
plot_samples(x, target)
|
| 281 |
+
return
|
| 282 |
+
|
| 283 |
+
# Optimizer
|
| 284 |
+
scheduler = tf.keras.optimizers.schedules.ExponentialDecay(
|
| 285 |
+
args.lr,
|
| 286 |
+
decay_steps=args.epochs * len(train_loader),
|
| 287 |
+
decay_rate=1 / (25e4), # final lr as a fraction of initial lr
|
| 288 |
+
staircase=False,
|
| 289 |
+
name="ExponentialDecay",
|
| 290 |
+
)
|
| 291 |
+
optimizer = tf.keras.optimizers.Adam(learning_rate=scheduler, beta_1=0.95, beta_2=0.99, epsilon=1e-6, clipnorm=5)
|
| 292 |
+
if args.amp:
|
| 293 |
+
optimizer = mixed_precision.LossScaleOptimizer(optimizer)
|
| 294 |
+
# LR Finder
|
| 295 |
+
if args.find_lr:
|
| 296 |
+
lrs, losses = record_lr(model, train_loader, batch_transforms, optimizer, amp=args.amp)
|
| 297 |
+
plot_recorder(lrs, losses)
|
| 298 |
+
return
|
| 299 |
+
|
| 300 |
+
# Tensorboard to monitor training
|
| 301 |
+
current_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
|
| 302 |
+
exp_name = f"{args.arch}_{current_time}" if args.name is None else args.name
|
| 303 |
+
|
| 304 |
+
config = {
|
| 305 |
+
"learning_rate": args.lr,
|
| 306 |
+
"epochs": args.epochs,
|
| 307 |
+
"batch_size": args.batch_size,
|
| 308 |
+
"architecture": args.arch,
|
| 309 |
+
"input_size": args.input_size,
|
| 310 |
+
"optimizer": optimizer.name,
|
| 311 |
+
"framework": "tensorflow",
|
| 312 |
+
"scheduler": scheduler.name,
|
| 313 |
+
"vocab": args.vocab,
|
| 314 |
+
"train_hash": train_hash,
|
| 315 |
+
"val_hash": val_hash,
|
| 316 |
+
"pretrained": args.pretrained,
|
| 317 |
+
}
|
| 318 |
+
|
| 319 |
+
# W&B
|
| 320 |
+
if args.wb:
|
| 321 |
+
import wandb
|
| 322 |
+
|
| 323 |
+
run = wandb.init(
|
| 324 |
+
name=exp_name,
|
| 325 |
+
project="text-recognition",
|
| 326 |
+
config=config,
|
| 327 |
+
)
|
| 328 |
+
|
| 329 |
+
# ClearML
|
| 330 |
+
if args.clearml:
|
| 331 |
+
from clearml import Task
|
| 332 |
+
|
| 333 |
+
task = Task.init(project_name="docTR/text-recognition", task_name=exp_name, reuse_last_task_id=False)
|
| 334 |
+
task.upload_artifact("config", config)
|
| 335 |
+
|
| 336 |
+
# Backbone freezing
|
| 337 |
+
if args.freeze_backbone:
|
| 338 |
+
for layer in model.feat_extractor.layers:
|
| 339 |
+
layer.trainable = False
|
| 340 |
+
|
| 341 |
+
min_loss = np.inf
|
| 342 |
+
if args.early_stop:
|
| 343 |
+
early_stopper = EarlyStopper(patience=args.early_stop_epochs, min_delta=args.early_stop_delta)
|
| 344 |
+
# Training loop
|
| 345 |
+
for epoch in range(args.epochs):
|
| 346 |
+
fit_one_epoch(model, train_loader, batch_transforms, optimizer, args.amp)
|
| 347 |
+
|
| 348 |
+
# Validation loop at the end of each epoch
|
| 349 |
+
val_loss, exact_match, partial_match = evaluate(model, val_loader, batch_transforms, val_metric)
|
| 350 |
+
if val_loss < min_loss:
|
| 351 |
+
print(f"Validation loss decreased {min_loss:.6} --> {val_loss:.6}: saving state...")
|
| 352 |
+
model.save_weights(f"./{exp_name}/weights")
|
| 353 |
+
min_loss = val_loss
|
| 354 |
+
print(
|
| 355 |
+
f"Epoch {epoch + 1}/{args.epochs} - Validation loss: {val_loss:.6} "
|
| 356 |
+
f"(Exact: {exact_match:.2%} | Partial: {partial_match:.2%})"
|
| 357 |
+
)
|
| 358 |
+
# W&B
|
| 359 |
+
if args.wb:
|
| 360 |
+
wandb.log({
|
| 361 |
+
"val_loss": val_loss,
|
| 362 |
+
"exact_match": exact_match,
|
| 363 |
+
"partial_match": partial_match,
|
| 364 |
+
})
|
| 365 |
+
|
| 366 |
+
# ClearML
|
| 367 |
+
if args.clearml:
|
| 368 |
+
from clearml import Logger
|
| 369 |
+
|
| 370 |
+
logger = Logger.current_logger()
|
| 371 |
+
logger.report_scalar(title="Validation Loss", series="val_loss", value=val_loss, iteration=epoch)
|
| 372 |
+
logger.report_scalar(title="Exact Match", series="exact_match", value=exact_match, iteration=epoch)
|
| 373 |
+
logger.report_scalar(title="Partial Match", series="partial_match", value=partial_match, iteration=epoch)
|
| 374 |
+
if args.early_stop and early_stopper.early_stop(val_loss):
|
| 375 |
+
print("Training halted early due to reaching patience limit.")
|
| 376 |
+
break
|
| 377 |
+
if args.wb:
|
| 378 |
+
run.finish()
|
| 379 |
+
|
| 380 |
+
if args.push_to_hub:
|
| 381 |
+
push_to_hf_hub(model, exp_name, task="recognition", run_config=args)
|
| 382 |
+
|
| 383 |
+
|
| 384 |
+
def parse_args():
|
| 385 |
+
import argparse
|
| 386 |
+
|
| 387 |
+
parser = argparse.ArgumentParser(
|
| 388 |
+
description="DocTR training script for text recognition (TensorFlow)",
|
| 389 |
+
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
|
| 390 |
+
)
|
| 391 |
+
|
| 392 |
+
parser.add_argument("arch", type=str, help="text-recognition model to train")
|
| 393 |
+
parser.add_argument("--train_path", type=str, default=None, help="path to train data folder(s)")
|
| 394 |
+
parser.add_argument("--val_path", type=str, default=None, help="path to val data folder")
|
| 395 |
+
parser.add_argument(
|
| 396 |
+
"--train-samples",
|
| 397 |
+
type=int,
|
| 398 |
+
default=1000,
|
| 399 |
+
help="Multiplied by the vocab length gets you the number of synthetic training samples that will be used.",
|
| 400 |
+
)
|
| 401 |
+
parser.add_argument(
|
| 402 |
+
"--val-samples",
|
| 403 |
+
type=int,
|
| 404 |
+
default=20,
|
| 405 |
+
help="Multiplied by the vocab length gets you the number of synthetic validation samples that will be used.",
|
| 406 |
+
)
|
| 407 |
+
parser.add_argument(
|
| 408 |
+
"--font", type=str, default="FreeMono.ttf,FreeSans.ttf,FreeSerif.ttf", help="Font family to be used"
|
| 409 |
+
)
|
| 410 |
+
parser.add_argument("--min-chars", type=int, default=1, help="Minimum number of characters per synthetic sample")
|
| 411 |
+
parser.add_argument("--max-chars", type=int, default=12, help="Maximum number of characters per synthetic sample")
|
| 412 |
+
parser.add_argument("--name", type=str, default=None, help="Name of your training experiment")
|
| 413 |
+
parser.add_argument("--epochs", type=int, default=10, help="number of epochs to train the model on")
|
| 414 |
+
parser.add_argument("-b", "--batch_size", type=int, default=64, help="batch size for training")
|
| 415 |
+
parser.add_argument("--input_size", type=int, default=32, help="input size H for the model, W = 4*H")
|
| 416 |
+
parser.add_argument("--lr", type=float, default=0.001, help="learning rate for the optimizer (Adam)")
|
| 417 |
+
parser.add_argument("-j", "--workers", type=int, default=None, help="number of workers used for dataloading")
|
| 418 |
+
parser.add_argument("--resume", type=str, default=None, help="Path to your checkpoint")
|
| 419 |
+
parser.add_argument("--vocab", type=str, default="french", help="Vocab to be used for training")
|
| 420 |
+
parser.add_argument("--test-only", dest="test_only", action="store_true", help="Run the validation loop")
|
| 421 |
+
parser.add_argument(
|
| 422 |
+
"--freeze-backbone", dest="freeze_backbone", action="store_true", help="freeze model backbone for fine-tuning"
|
| 423 |
+
)
|
| 424 |
+
parser.add_argument(
|
| 425 |
+
"--show-samples", dest="show_samples", action="store_true", help="Display unormalized training samples"
|
| 426 |
+
)
|
| 427 |
+
parser.add_argument("--wb", dest="wb", action="store_true", help="Log to Weights & Biases")
|
| 428 |
+
parser.add_argument("--clearml", dest="clearml", action="store_true", help="Log to ClearML")
|
| 429 |
+
parser.add_argument("--push-to-hub", dest="push_to_hub", action="store_true", help="Push to Huggingface Hub")
|
| 430 |
+
parser.add_argument(
|
| 431 |
+
"--pretrained",
|
| 432 |
+
dest="pretrained",
|
| 433 |
+
action="store_true",
|
| 434 |
+
help="Load pretrained parameters before starting the training",
|
| 435 |
+
)
|
| 436 |
+
parser.add_argument("--amp", dest="amp", help="Use Automatic Mixed Precision", action="store_true")
|
| 437 |
+
parser.add_argument("--find-lr", action="store_true", help="Gridsearch the optimal LR")
|
| 438 |
+
parser.add_argument("--early-stop", action="store_true", help="Enable early stopping")
|
| 439 |
+
parser.add_argument("--early-stop-epochs", type=int, default=5, help="Patience for early stopping")
|
| 440 |
+
parser.add_argument("--early-stop-delta", type=float, default=0.01, help="Minimum Delta for early stopping")
|
| 441 |
+
args = parser.parse_args()
|
| 442 |
+
|
| 443 |
+
return args
|
| 444 |
+
|
| 445 |
+
|
| 446 |
+
if __name__ == "__main__":
|
| 447 |
+
args = parse_args()
|
| 448 |
+
main(args)
|