Last commit not found
# © Recursion Pharmaceuticals 2024 | |
import math | |
import torch | |
def flatten_images( | |
img: torch.Tensor, patch_size: int, channel_agnostic: bool = False | |
) -> torch.Tensor: | |
""" | |
Flattens 2D images into tokens with the same pixel values | |
Parameters | |
---------- | |
img : input image tensor (N, C, H, W) | |
Returns | |
------- | |
flattened_img: flattened image tensor (N, L, patch_size**2 * C) | |
""" | |
if (img.shape[2] != img.shape[3]) or (img.shape[2] % patch_size != 0): | |
raise ValueError("image H must equal image W and be divisible by patch_size") | |
in_chans = img.shape[1] | |
h = w = int(img.shape[2] // patch_size) | |
x = img.reshape(shape=(img.shape[0], in_chans, h, patch_size, w, patch_size)) | |
if channel_agnostic: | |
x = torch.permute(x, (0, 1, 2, 4, 3, 5)) # NCHPWQ -> NCHWPQ | |
x = x.reshape(shape=(img.shape[0], in_chans * h * w, int(patch_size**2))) | |
else: | |
x = torch.permute(x, (0, 2, 4, 3, 5, 1)) # NCHPWQ -> NHWPQC | |
x = x.reshape(shape=(img.shape[0], h * w, int(patch_size**2 * in_chans))) | |
return x | |
def unflatten_tokens( | |
tokens: torch.Tensor, | |
patch_size: int, | |
num_modalities: int = 1, | |
channel_agnostic: bool = False, | |
) -> torch.Tensor: | |
""" | |
Unflattens tokens (N,L,patch_size**2 * C) into image tensor (N,C,H,W) with the pixel values | |
Parameters | |
---------- | |
tokens : input token tensor (N,L,patch_size**2 * C) | |
Returns | |
------- | |
img: image tensor (N,C,H,W) | |
""" | |
if num_modalities > 1 and not channel_agnostic: | |
raise ValueError("Multiple modalities requires channel agnostic unflattening.") | |
h = w = int(math.sqrt(tokens.shape[1] // num_modalities)) | |
if h * w != (tokens.shape[1] // num_modalities): | |
raise ValueError("sqrt of number of tokens not integer") | |
if channel_agnostic: | |
x = tokens.reshape(shape=(tokens.shape[0], -1, h, w, patch_size, patch_size)) | |
x = torch.permute(x, (0, 1, 2, 4, 3, 5)) # NCHWPQ -> NCHPWQ | |
else: | |
x = tokens.reshape(shape=(tokens.shape[0], h, w, patch_size, patch_size, -1)) | |
x = torch.permute(x, (0, 5, 1, 3, 2, 4)) # NHWPQC -> NCHPWQ | |
img = x.reshape(shape=(x.shape[0], -1, h * patch_size, h * patch_size)) | |
return img | |