|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""PyTorch RWKV7Qwen2 model."""
|
|
|
|
import math
|
|
import inspect
|
|
from typing import List, Optional, Tuple, Union, Dict, Any
|
|
|
|
import torch
|
|
import torch.utils.checkpoint
|
|
from torch import nn
|
|
import torch.nn.functional as F
|
|
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
|
|
|
from transformers.cache_utils import Cache, StaticCache
|
|
from transformers.generation import GenerationMixin
|
|
from transformers.modeling_outputs import (
|
|
BaseModelOutputWithPast,
|
|
CausalLMOutputWithPast,
|
|
QuestionAnsweringModelOutput,
|
|
SequenceClassifierOutputWithPast,
|
|
TokenClassifierOutput,
|
|
)
|
|
from transformers.modeling_utils import PreTrainedModel
|
|
from transformers.utils import (
|
|
add_code_sample_docstrings,
|
|
add_start_docstrings,
|
|
add_start_docstrings_to_model_forward,
|
|
is_flash_attn_2_available,
|
|
is_flash_attn_greater_or_equal_2_10,
|
|
logging,
|
|
replace_return_docstrings,
|
|
)
|
|
from .configuration_rwkv7qwen2 import RWKV7Qwen2Config
|
|
|
|
from transformers.models.qwen2.modeling_qwen2 import Qwen2DecoderLayer, Qwen2MLP, Qwen2RMSNorm, Qwen2Attention
|
|
from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS
|
|
|
|
logger = logging.get_logger(__name__)
|
|
|
|
_CHECKPOINT_FOR_DOC = "recursal/QRWKV7-7B-Instruct-Preview-v0.1"
|
|
_CONFIG_FOR_DOC = "RWKV7Qwen2Config"
|
|
|
|
class RWKV7State(Cache):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self._seen_tokens = 0
|
|
self.layer_kv_states: List[torch.Tensor] = []
|
|
self.layer_shift_states: List[torch.Tensor] = []
|
|
|
|
def __getitem__(self, layer_idx: int) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
"""
|
|
Support for backwards-compatible `past_key_value` indexing, e.g. `past_key_value[0][0].shape[2]` to get the
|
|
sequence length.
|
|
"""
|
|
if layer_idx < len(self):
|
|
return (self.layer_kv_states[layer_idx], self.layer_shift_states[layer_idx])
|
|
else:
|
|
raise KeyError(f"Cache only has {len(self)} layers, attempted to access layer with index {layer_idx}")
|
|
|
|
def __iter__(self):
|
|
"""
|
|
Support for backwards-compatible `past_key_value` iteration, e.g. `for x in past_key_value:` to iterate over
|
|
keys and values
|
|
"""
|
|
for layer_idx in range(len(self)):
|
|
yield (self.layer_kv_states[layer_idx], self.layer_shift_states[layer_idx])
|
|
|
|
def __len__(self):
|
|
"""
|
|
Support for backwards-compatible `past_key_value` length, e.g. `len(past_key_value)`. This value corresponds
|
|
to the number of layers in the model.
|
|
"""
|
|
return len(self.layer_kv_states)
|
|
|
|
def get_usable_length(self, new_seq_length: int, layer_idx: Optional[int] = 0) -> int:
|
|
"""Given the sequence length of the new inputs, returns the usable length of the cache."""
|
|
|
|
return new_seq_length
|
|
|
|
def reorder_cache(self, beam_idx: torch.LongTensor):
|
|
"""Reorders the cache for beam search, given the selected beam indices."""
|
|
raise NotImplementedError('Cannot reorder Linear Attention state')
|
|
|
|
def get_seq_length(self, layer_idx: int = 0) -> int:
|
|
"""Returns the sequence length of the cached states. A layer index can be optionally passed."""
|
|
return self._seen_tokens
|
|
|
|
def get_max_cache_shape(self) -> Optional[int]:
|
|
"""Returns the maximum sequence length of the cache object. DynamicCache does not have a maximum length."""
|
|
return None
|
|
|
|
def get_max_length(self) -> Optional[int]:
|
|
"""
|
|
Returns the maximum sequence length of the cached states. DynamicCache does not have a maximum length.
|
|
"""
|
|
return None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def crop(self, max_length: int):
|
|
|
|
return
|
|
|
|
@torch.no_grad
|
|
def update(
|
|
self,
|
|
kv_state: torch.Tensor,
|
|
shift_state: torch.Tensor,
|
|
token_count: int,
|
|
layer_idx: int,
|
|
cache_kwargs: Optional[Dict[str, Any]] = None,
|
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
|
|
if layer_idx == 0:
|
|
self._seen_tokens += token_count
|
|
|
|
|
|
|
|
for _ in range(len(self.layer_kv_states), layer_idx + 1):
|
|
self.layer_kv_states.append(torch.zeros_like(kv_state).requires_grad_(False))
|
|
self.layer_shift_states.append(torch.zeros_like(shift_state).requires_grad_(False))
|
|
self.layer_kv_states[layer_idx].copy_(kv_state)
|
|
self.layer_shift_states[layer_idx].copy_(shift_state)
|
|
|
|
return self.layer_kv_states[layer_idx], self.layer_shift_states[layer_idx]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
try:
|
|
from fla.ops.rwkv7.chunk import chunk_rwkv7
|
|
from fla.ops.rwkv7.fused_recurrent import fused_recurrent_rwkv7
|
|
except ImportError:
|
|
print("Required module is not installed. Please install it using the following commands:")
|
|
print("pip install -U git+https://github.com/fla-org/flash-linear-attention")
|
|
print("Additionally, ensure you have at least version 2.2.0 of Triton installed:")
|
|
print("pip install triton>=2.2.0")
|
|
|
|
class Qwen2RotaryEmbedding(nn.Module):
|
|
def __init__(self, config: RWKV7Qwen2Config, device=None):
|
|
super().__init__()
|
|
|
|
if hasattr(config, "rope_scaling") and config.rope_scaling is not None:
|
|
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
|
|
else:
|
|
self.rope_type = "default"
|
|
self.max_seq_len_cached = config.max_position_embeddings
|
|
self.original_max_seq_len = config.max_position_embeddings
|
|
|
|
self.config = config
|
|
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
|
|
|
|
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
|
|
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
|
self.original_inv_freq = self.inv_freq
|
|
|
|
def _dynamic_frequency_update(self, position_ids, device):
|
|
"""
|
|
dynamic RoPE layers should recompute `inv_freq` in the following situations:
|
|
1 - growing beyond the cached sequence length (allow scaling)
|
|
2 - the current sequence length is in the original scale (avoid losing precision with small sequences)
|
|
"""
|
|
seq_len = torch.max(position_ids) + 1
|
|
if seq_len > self.max_seq_len_cached:
|
|
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device, seq_len=seq_len)
|
|
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
|
self.max_seq_len_cached = seq_len
|
|
|
|
if seq_len < self.original_max_seq_len and self.max_seq_len_cached > self.original_max_seq_len:
|
|
|
|
|
|
self.original_inv_freq = self.original_inv_freq.to(device)
|
|
self.register_buffer("inv_freq", self.original_inv_freq, persistent=False)
|
|
self.max_seq_len_cached = self.original_max_seq_len
|
|
|
|
@torch.no_grad()
|
|
def forward(self, x, position_ids):
|
|
if "dynamic" in self.rope_type:
|
|
self._dynamic_frequency_update(position_ids, device=x.device)
|
|
|
|
|
|
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
|
|
position_ids_expanded = position_ids[:, None, :].float()
|
|
|
|
device_type = x.device.type
|
|
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
|
|
with torch.autocast(device_type=device_type, enabled=False):
|
|
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
|
|
emb = torch.cat((freqs, freqs), dim=-1)
|
|
cos = emb.cos()
|
|
sin = emb.sin()
|
|
|
|
|
|
cos = cos * self.attention_scaling
|
|
sin = sin * self.attention_scaling
|
|
|
|
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
|
|
|
|
def generate_rotary_embedding(max_seqlen:int, dim:int, theta:float = 10000.0, scale:float = 1):
|
|
|
|
|
|
angular_velocity = theta ** -(torch.arange(0, dim, 2, dtype=torch.float) / dim) / scale
|
|
angles = torch.outer(torch.arange(max_seqlen), angular_velocity)
|
|
|
|
emb = torch.cat((angles, angles), dim=-1)
|
|
return torch.stack([emb.cos(), emb.sin()], dim=0)
|
|
|
|
|
|
|
|
def rotate_half(x):
|
|
"""Rotates half the hidden dims of the input."""
|
|
x1 = x[..., : x.shape[-1] // 2]
|
|
x2 = x[..., x.shape[-1] // 2 :]
|
|
return torch.cat((-x2, x1), dim=-1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
|
|
"""Applies Rotary Position Embedding to the query and key tensors.
|
|
|
|
Args:
|
|
q (`torch.Tensor`): The query tensor.
|
|
k (`torch.Tensor`): The key tensor.
|
|
cos (`torch.Tensor`): The cosine part of the rotary embedding.
|
|
sin (`torch.Tensor`): The sine part of the rotary embedding.
|
|
position_ids (`torch.Tensor`, *optional*):
|
|
Deprecated and unused.
|
|
unsqueeze_dim (`int`, *optional*, defaults to 1):
|
|
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
|
|
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
|
|
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
|
|
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
|
|
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
|
|
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
|
|
Returns:
|
|
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
|
|
"""
|
|
cos = cos.unsqueeze(unsqueeze_dim)
|
|
sin = sin.unsqueeze(unsqueeze_dim)
|
|
q_embed = (q * cos) + (rotate_half(q) * sin)
|
|
k_embed = (k * cos) + (rotate_half(k) * sin)
|
|
return q_embed, k_embed
|
|
|
|
class RWKV7Attention(nn.Module):
|
|
def __init__(self, config, layer_idx: Optional[int] = None):
|
|
super().__init__()
|
|
self.config = config
|
|
self.layer_idx = layer_idx
|
|
C = self.hidden_size = config.hidden_size
|
|
H = self.num_heads = config.num_attention_heads
|
|
N = self.head_dim = getattr(config, 'head_dim', self.hidden_size // self.num_heads)
|
|
self.num_key_value_heads = config.num_key_value_heads
|
|
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
|
self.attention_dropout = config.attention_dropout
|
|
|
|
if self.hidden_size % self.num_heads != 0:
|
|
raise ValueError(
|
|
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
|
f" and `num_heads`: {self.num_heads})."
|
|
)
|
|
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias)
|
|
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
|
|
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
|
|
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=getattr(config, 'attention_output_bias', config.attention_bias))
|
|
|
|
calc_lora_rank = lambda exponent, multiplier: max(1, round(self.hidden_size ** exponent * multiplier / 32)) * 32
|
|
lora_rank_decay = config.lora_rank_decay or calc_lora_rank(0.5, 1.8)
|
|
lora_rank_iclr = config.lora_rank_iclr or calc_lora_rank(0.5, 1.8)
|
|
lora_rank_value_residual_mix = config.lora_rank_value_residual_mix or calc_lora_rank(0.5, 1.3)
|
|
lora_rank_gate = config.lora_rank_gate or calc_lora_rank(0.8, 0.6)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
self.w0 = nn.Parameter(torch.empty(1,1,C))
|
|
self.w1 = nn.Parameter(torch.empty(C, lora_rank_decay))
|
|
self.w2 = nn.Parameter(torch.empty(lora_rank_decay, C))
|
|
|
|
self.a0 = nn.Parameter(torch.empty(1,1,C))
|
|
self.a1 = nn.Parameter(torch.empty(C, lora_rank_iclr))
|
|
self.a2 = nn.Parameter(torch.empty(lora_rank_iclr, C))
|
|
|
|
|
|
self.v0 = nn.Parameter(torch.empty(1,1,C))
|
|
self.v1 = nn.Parameter(torch.empty(C, lora_rank_value_residual_mix))
|
|
self.v2 = nn.Parameter(torch.empty(lora_rank_value_residual_mix, C))
|
|
|
|
self.g1 = nn.Parameter(torch.empty(C, lora_rank_gate))
|
|
self.g2 = nn.Parameter(torch.empty(lora_rank_gate, C))
|
|
|
|
self.k_k = nn.Parameter(torch.empty(1,1,C))
|
|
self.k_a = nn.Parameter(torch.empty(1,1,C))
|
|
self.r_k = nn.Parameter(torch.empty(H,N))
|
|
|
|
self.ln_x = nn.GroupNorm(H, C, eps=self.head_dim * 1e-5)
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
v_first: Optional[torch.Tensor] = None,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
past_key_values: Optional[RWKV7State] = None,
|
|
output_attentions: bool = False,
|
|
use_cache: bool = False,
|
|
cache_position: Optional[torch.LongTensor] = None,
|
|
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
|
):
|
|
if attention_mask is not None:
|
|
assert len(attention_mask.shape) == 2, (
|
|
"Expected attention_mask as a 0-1 matrix with shape [batch_size, seq_len] "
|
|
"for padding purposes (0 indicating padding). "
|
|
"Arbitrary attention masks of shape [batch_size, seq_len, seq_len] are not allowed."
|
|
)
|
|
|
|
output_shift_state = hidden_states[:, -1:].detach().clone()
|
|
|
|
x = hidden_states
|
|
|
|
B, T, C = hidden_states.shape
|
|
H = self.num_heads
|
|
N = self.head_dim
|
|
q_len = T
|
|
|
|
if use_cache and past_key_values is not None and len(past_key_values) > self.layer_idx:
|
|
input_vk_state, input_shift_state = past_key_values[self.layer_idx]
|
|
else:
|
|
input_vk_state, input_shift_state = torch.zeros(B,H,N,N, dtype=torch.float32,device=x.device), torch.zeros_like(x[:, -1:])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
xr = xw = xk = xv = xa = xg = x
|
|
|
|
r = self.q_proj(xr)
|
|
w_lora_result = self.w0 + self.w0 + (torch.tanh(xw @ self.w1) @ self.w2).float()
|
|
k = self.k_proj(xk)
|
|
v = self.v_proj(xv)
|
|
a = torch.sigmoid(self.a0 + (xa @ self.a1) @ self.a2)
|
|
g = torch.sigmoid(xg @ self.g1) @ self.g2
|
|
|
|
if position_embeddings is not None:
|
|
r = r.view(B,T,-1,N)
|
|
k = k.view(B,T,-1,N)
|
|
|
|
|
|
cos, sin = position_embeddings
|
|
|
|
r, k = apply_rotary_pos_emb(r, k, cos, sin, unsqueeze_dim=2)
|
|
|
|
|
|
|
|
|
|
k = k.view(B, T, -1, 1, self.head_dim).expand(-1, -1, -1, self.num_key_value_groups, -1).reshape(B, T, -1)
|
|
v = v.view(B, T, -1, 1, self.head_dim).expand(-1, -1, -1, self.num_key_value_groups, -1).reshape(B, T, -1)
|
|
dropout_rate = 0.0 if not self.training else self.attention_dropout
|
|
|
|
kk = torch.nn.functional.normalize((k * self.k_k).view(B,T,H,-1), dim=-1, p=2.0).view(B,T,-1)
|
|
|
|
a = 1 + (a-1) * self.k_a
|
|
k = k * a
|
|
if self.layer_idx == 0: v_first = v
|
|
else: v = v + (v_first - v) * torch.sigmoid(self.v0 + (xv @ self.v1) @ self.v2)
|
|
|
|
|
|
if attention_mask is not None:
|
|
v = v * attention_mask[:, -v.shape[-2]:, None]
|
|
|
|
xx = x
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
log_neglog_w = - 0.5 - torch.nn.functional.softplus(-w_lora_result)
|
|
log_w = -log_neglog_w.float().exp()
|
|
|
|
r,log_w,k,v,kk,a = [i.view(B,T,self.num_heads,-1) for i in [r,log_w,k,v,kk,a]]
|
|
if self.training:
|
|
xx, output_vk_state = chunk_rwkv7(r, log_w, k, v, -kk, kk*a, initial_state=input_vk_state, output_final_state=use_cache)
|
|
else:
|
|
xx, output_vk_state = fused_recurrent_rwkv7(r, log_w, k, v, -kk, kk*a, initial_state=input_vk_state, output_final_state=use_cache)
|
|
|
|
xx = torch.nn.functional.group_norm(xx.view(B*T,H*N), num_groups=H, weight=self.ln_x.weight, bias=self.ln_x.bias, eps = self.ln_x.eps).view(B,T,H*N)
|
|
|
|
xx = self.o_proj(xx * g)
|
|
|
|
output_final_state = not self.training and use_cache and past_key_values is not None
|
|
if output_final_state:
|
|
past_key_values.update(output_vk_state, output_shift_state, q_len, self.layer_idx)
|
|
|
|
return xx, v_first
|
|
|
|
class RWKV7Qwen2DecoderLayer(nn.Module):
|
|
def __init__(self, config: RWKV7Qwen2Config, layer_idx: int):
|
|
nn.Module.__init__(self)
|
|
self.hidden_size = config.hidden_size
|
|
|
|
if layer_idx >= config.num_hidden_layers - config.num_attention_layers:
|
|
self.self_attn = Qwen2Attention(config=config, layer_idx=layer_idx)
|
|
else:
|
|
self.self_attn = RWKV7Attention(config, layer_idx)
|
|
|
|
self.mlp = Qwen2MLP(config)
|
|
self.input_layernorm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
self.post_attention_layernorm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
v_first: Optional[torch.Tensor],
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
past_key_values: Optional[Cache] = None,
|
|
output_attentions: Optional[bool] = False,
|
|
use_cache: Optional[bool] = False,
|
|
cache_position: Optional[torch.LongTensor] = None,
|
|
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
|
**kwargs,
|
|
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
|
residual = hidden_states
|
|
|
|
hidden_states = self.input_layernorm(hidden_states)
|
|
|
|
|
|
hidden_states, v_first = self.self_attn(
|
|
hidden_states=hidden_states,
|
|
v_first=v_first,
|
|
attention_mask=attention_mask,
|
|
position_ids=position_ids,
|
|
past_key_values=past_key_values,
|
|
output_attentions=output_attentions,
|
|
use_cache=use_cache,
|
|
cache_position=cache_position,
|
|
position_embeddings=position_embeddings,
|
|
)
|
|
hidden_states = residual + hidden_states
|
|
|
|
|
|
residual = hidden_states
|
|
hidden_states = self.post_attention_layernorm(hidden_states)
|
|
hidden_states = self.mlp(hidden_states)
|
|
hidden_states = residual + hidden_states
|
|
|
|
outputs = (hidden_states, v_first,)
|
|
|
|
if output_attentions:
|
|
outputs += (self_attn_weights,)
|
|
|
|
return outputs
|
|
|
|
|
|
|
|
RWKV7QWEN2_START_DOCSTRING = r"""
|
|
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
|
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
|
etc.)
|
|
|
|
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
|
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
|
and behavior.
|
|
|
|
Parameters:
|
|
config ([`RWKV7Qwen2Config`]):
|
|
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
|
load the weights associated with the model, only the configuration. Check out the
|
|
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
|
"""
|
|
|
|
|
|
@add_start_docstrings(
|
|
"The bare Qwen2 Model outputting raw hidden-states without any specific head on top.",
|
|
RWKV7QWEN2_START_DOCSTRING,
|
|
)
|
|
class RWKV7Qwen2PreTrainedModel(PreTrainedModel):
|
|
config_class = RWKV7Qwen2Config
|
|
base_model_prefix = "model"
|
|
supports_gradient_checkpointing = True
|
|
_no_split_modules = ["RWKV7Qwen2DecoderLayer"]
|
|
_skip_keys_device_placement = "past_key_values"
|
|
_supports_flash_attn_2 = True
|
|
_supports_sdpa = True
|
|
_supports_cache_class = True
|
|
_supports_quantized_cache = True
|
|
_supports_static_cache = True
|
|
|
|
def _init_weights(self, module):
|
|
std = self.config.initializer_range
|
|
if isinstance(module, nn.Linear):
|
|
module.weight.data.normal_(mean=0.0, std=std)
|
|
if module.bias is not None:
|
|
module.bias.data.zero_()
|
|
elif isinstance(module, nn.Embedding):
|
|
module.weight.data.normal_(mean=0.0, std=std)
|
|
if module.padding_idx is not None:
|
|
module.weight.data[module.padding_idx].zero_()
|
|
|
|
|
|
RWKV7QWEN2_INPUTS_DOCSTRING = r"""
|
|
Args:
|
|
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
|
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
|
it.
|
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
|
[`PreTrainedTokenizer.__call__`] for details.
|
|
|
|
[What are input IDs?](../glossary#input-ids)
|
|
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
|
|
|
- 1 for tokens that are **not masked**,
|
|
- 0 for tokens that are **masked**.
|
|
|
|
[What are attention masks?](../glossary#attention-mask)
|
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
|
[`PreTrainedTokenizer.__call__`] for details.
|
|
|
|
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
|
|
`past_key_values`).
|
|
|
|
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
|
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
|
information on the default strategy.
|
|
|
|
- 1 indicates the head is **not masked**,
|
|
- 0 indicates the head is **masked**.
|
|
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
|
config.n_positions - 1]`.
|
|
|
|
[What are position IDs?](../glossary#position-ids)
|
|
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
|
|
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
|
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
|
|
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
|
|
|
|
Two formats are allowed:
|
|
- a [`~cache_utils.Cache`] instance, see our
|
|
[kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache);
|
|
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
|
|
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
|
|
cache format.
|
|
|
|
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
|
|
legacy cache format will be returned.
|
|
|
|
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
|
|
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
|
|
of shape `(batch_size, sequence_length)`.
|
|
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
|
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
|
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
|
model's internal embedding lookup matrix.
|
|
use_cache (`bool`, *optional*):
|
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
|
`past_key_values`).
|
|
output_attentions (`bool`, *optional*):
|
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
|
tensors for more detail.
|
|
output_hidden_states (`bool`, *optional*):
|
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
|
more detail.
|
|
return_dict (`bool`, *optional*):
|
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
|
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
|
|
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
|
|
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
|
|
the complete sequence length.
|
|
"""
|
|
|
|
@add_start_docstrings(
|
|
"The bare RWKV7Qwen2 Model outputting raw hidden-states without any specific head on top.",
|
|
RWKV7QWEN2_START_DOCSTRING,
|
|
)
|
|
class RWKV7Qwen2Model(RWKV7Qwen2PreTrainedModel):
|
|
"""
|
|
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`Qwen2DecoderLayer`]
|
|
|
|
Args:
|
|
config: RWKV7Qwen2Config
|
|
"""
|
|
|
|
def __init__(self, config: RWKV7Qwen2Config):
|
|
super().__init__(config)
|
|
self.padding_idx = config.pad_token_id
|
|
self.vocab_size = config.vocab_size
|
|
|
|
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
|
self.layers = nn.ModuleList(
|
|
[RWKV7Qwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
|
)
|
|
self._attn_implementation = config._attn_implementation
|
|
self.norm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
self.rotary_emb = Qwen2RotaryEmbedding(config=config)
|
|
|
|
self.gradient_checkpointing = False
|
|
|
|
self.post_init()
|
|
|
|
def get_input_embeddings(self):
|
|
return self.embed_tokens
|
|
|
|
def set_input_embeddings(self, value):
|
|
self.embed_tokens = value
|
|
|
|
@add_start_docstrings_to_model_forward(RWKV7QWEN2_INPUTS_DOCSTRING)
|
|
def forward(
|
|
self,
|
|
input_ids: torch.LongTensor = None,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
past_key_values: Optional[Cache] = None,
|
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
use_cache: Optional[bool] = None,
|
|
output_attentions: Optional[bool] = None,
|
|
output_hidden_states: Optional[bool] = None,
|
|
return_dict: Optional[bool] = None,
|
|
cache_position: Optional[torch.LongTensor] = None,
|
|
) -> Union[Tuple, BaseModelOutputWithPast]:
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
output_hidden_states = (
|
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
)
|
|
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
if (input_ids is None) ^ (inputs_embeds is not None):
|
|
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
|
|
|
|
if self.gradient_checkpointing and self.training:
|
|
if use_cache:
|
|
logger.warning_once(
|
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
|
)
|
|
use_cache = False
|
|
|
|
if inputs_embeds is None:
|
|
inputs_embeds = self.embed_tokens(input_ids)
|
|
|
|
if use_cache and not isinstance(past_key_values, RWKV7State):
|
|
past_key_values = RWKV7State()
|
|
|
|
if cache_position is None:
|
|
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
|
cache_position = torch.arange(
|
|
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
|
|
)
|
|
|
|
if position_ids is None:
|
|
position_ids = cache_position.unsqueeze(0)
|
|
|
|
|
|
|
|
|
|
|
|
causal_mask = None
|
|
|
|
hidden_states = inputs_embeds
|
|
|
|
|
|
|
|
position_embeddings = self.rotary_emb(hidden_states, position_ids)
|
|
|
|
|
|
all_hidden_states = () if output_hidden_states else None
|
|
all_self_attns = () if output_attentions else None
|
|
next_decoder_cache = None
|
|
v_first = None
|
|
|
|
for decoder_layer in self.layers:
|
|
if output_hidden_states:
|
|
all_hidden_states += (hidden_states,)
|
|
|
|
if self.gradient_checkpointing and self.training:
|
|
layer_outputs = self._gradient_checkpointing_func(
|
|
decoder_layer.__call__,
|
|
hidden_states,
|
|
causal_mask,
|
|
position_ids,
|
|
past_key_values,
|
|
output_attentions,
|
|
use_cache,
|
|
cache_position,
|
|
position_embeddings,
|
|
v_first,
|
|
)
|
|
else:
|
|
layer_outputs = decoder_layer(
|
|
hidden_states,
|
|
attention_mask=attention_mask,
|
|
position_ids=position_ids,
|
|
past_key_values=past_key_values,
|
|
output_attentions=output_attentions,
|
|
use_cache=use_cache,
|
|
cache_position=cache_position,
|
|
position_embeddings=position_embeddings,
|
|
v_first=v_first,
|
|
)
|
|
|
|
hidden_states = layer_outputs[0]
|
|
v_first = layer_outputs[1]
|
|
|
|
if output_attentions:
|
|
all_self_attns += (layer_outputs[2],)
|
|
|
|
hidden_states = self.norm(hidden_states)
|
|
|
|
|
|
if output_hidden_states:
|
|
all_hidden_states += (hidden_states,)
|
|
|
|
|
|
|
|
|
|
if not return_dict:
|
|
return tuple(v for v in [hidden_states, past_key_values, all_hidden_states, all_self_attns] if v is not None)
|
|
return BaseModelOutputWithPast(
|
|
last_hidden_state=hidden_states,
|
|
past_key_values=past_key_values,
|
|
hidden_states=all_hidden_states,
|
|
attentions=all_self_attns,
|
|
)
|
|
|
|
class RWKV7Qwen2ForCausalLM(RWKV7Qwen2PreTrainedModel, GenerationMixin):
|
|
_tied_weights_keys = ["lm_head.weight"]
|
|
|
|
def __init__(self, config):
|
|
super().__init__(config)
|
|
self.model = RWKV7Qwen2Model(config)
|
|
self.vocab_size = config.vocab_size
|
|
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
|
|
|
|
|
self.post_init()
|
|
|
|
def get_input_embeddings(self):
|
|
return self.model.embed_tokens
|
|
|
|
def set_input_embeddings(self, value):
|
|
self.model.embed_tokens = value
|
|
|
|
def get_output_embeddings(self):
|
|
return self.lm_head
|
|
|
|
def set_output_embeddings(self, new_embeddings):
|
|
self.lm_head = new_embeddings
|
|
|
|
def set_decoder(self, decoder):
|
|
self.model = decoder
|
|
|
|
def get_decoder(self):
|
|
return self.model
|
|
|
|
@add_start_docstrings_to_model_forward(RWKV7QWEN2_INPUTS_DOCSTRING)
|
|
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
|
def forward(
|
|
self,
|
|
input_ids: torch.LongTensor = None,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
labels: Optional[torch.LongTensor] = None,
|
|
use_cache: Optional[bool] = None,
|
|
output_attentions: Optional[bool] = None,
|
|
output_hidden_states: Optional[bool] = None,
|
|
return_dict: Optional[bool] = None,
|
|
cache_position: Optional[torch.LongTensor] = None,
|
|
num_logits_to_keep: int = 0,
|
|
**loss_kwargs,
|
|
) -> Union[Tuple, CausalLMOutputWithPast]:
|
|
r"""
|
|
Args:
|
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
|
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
|
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
|
|
|
num_logits_to_keep (`int`, *optional*):
|
|
Calculate logits for the last `num_logits_to_keep` tokens. If `0`, calculate logits for all
|
|
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
|
|
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
|
|
|
|
Returns:
|
|
|
|
Example:
|
|
|
|
```python
|
|
>>> from transformers import AutoTokenizer, RWKV7Qwen2ForCausalLM
|
|
|
|
>>> model = RWKV7Qwen2ForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
|
|
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
|
|
|
|
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
|
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
|
|
|
>>> # Generate
|
|
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
|
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
|
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
|
```"""
|
|
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
output_hidden_states = (
|
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
)
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
|
|
outputs = self.model(
|
|
input_ids=input_ids,
|
|
attention_mask=attention_mask,
|
|
position_ids=position_ids,
|
|
past_key_values=past_key_values,
|
|
inputs_embeds=inputs_embeds,
|
|
use_cache=use_cache,
|
|
output_attentions=output_attentions,
|
|
output_hidden_states=output_hidden_states,
|
|
return_dict=return_dict,
|
|
cache_position=cache_position,
|
|
)
|
|
|
|
hidden_states = outputs[0]
|
|
|
|
logits = self.lm_head(hidden_states[:, -num_logits_to_keep:, :])
|
|
|
|
loss = None
|
|
if labels is not None:
|
|
loss = self.loss_function(logits, labels, self.vocab_size, **loss_kwargs)
|
|
|
|
if not return_dict:
|
|
output = (logits,) + outputs[1:]
|
|
return (loss,) + output if loss is not None else output
|
|
|
|
return CausalLMOutputWithPast(
|
|
loss=loss,
|
|
logits=logits,
|
|
past_key_values=outputs.past_key_values,
|
|
hidden_states=outputs.hidden_states,
|
|
attentions=outputs.attentions,
|
|
)
|
|
|
|
def prepare_inputs_for_generation(
|
|
self,
|
|
input_ids: torch.LongTensor,
|
|
past_key_values: Optional[Cache] = None,
|
|
attention_mask: Optional[torch.LongTensor] = None,
|
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
cache_position: Optional[torch.LongTensor] = None,
|
|
**kwargs,
|
|
):
|
|
|
|
if past_key_values is not None and len(past_key_values) > 0:
|
|
input_ids = input_ids[:, -1:]
|
|
|
|
model_inputs = {
|
|
'past_key_values': past_key_values,
|
|
'attention_mask': attention_mask,
|
|
'cache_position': cache_position,
|
|
}
|
|
|
|
if inputs_embeds is not None and past_key_values is None:
|
|
model_inputs['inputs_embeds'] = inputs_embeds
|
|
else:
|
|
|
|
|
|
|
|
|
|
model_inputs['input_ids'] = input_ids.contiguous()
|
|
|
|
model_inputs.update(**kwargs)
|
|
|
|
|
|
model_inputs.pop("labels", None)
|
|
|
|
return model_inputs
|
|
|
|
@add_start_docstrings(
|
|
"""
|
|
The RWKV7Qwen2 Model transformer with a sequence classification head on top (linear layer).
|
|
|
|
[`RWKV7Qwen2ForSequenceClassification`] uses the last token in order to do the classification, as other causal models
|
|
(e.g. GPT-2) do.
|
|
|
|
Since it does classification on the last token, it requires to know the position of the last token. If a
|
|
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
|
|
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
|
|
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
|
|
each row of the batch).
|
|
""",
|
|
RWKV7QWEN2_START_DOCSTRING,
|
|
)
|
|
class RWKV7Qwen2ForSequenceClassification(RWKV7Qwen2PreTrainedModel):
|
|
def __init__(self, config):
|
|
super().__init__(config)
|
|
self.num_labels = config.num_labels
|
|
self.model = RWKV7Qwen2Model(config)
|
|
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
|
|
|
|
|
|
self.post_init()
|
|
|
|
def get_input_embeddings(self):
|
|
return self.model.embed_tokens
|
|
|
|
def set_input_embeddings(self, value):
|
|
self.model.embed_tokens = value
|
|
|
|
@add_start_docstrings_to_model_forward(RWKV7QWEN2_INPUTS_DOCSTRING)
|
|
def forward(
|
|
self,
|
|
input_ids: torch.LongTensor = None,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
labels: Optional[torch.LongTensor] = None,
|
|
use_cache: Optional[bool] = None,
|
|
output_attentions: Optional[bool] = None,
|
|
output_hidden_states: Optional[bool] = None,
|
|
return_dict: Optional[bool] = None,
|
|
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
|
|
r"""
|
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
|
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
|
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
|
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
|
"""
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
transformer_outputs = self.model(
|
|
input_ids,
|
|
attention_mask=attention_mask,
|
|
position_ids=position_ids,
|
|
past_key_values=past_key_values,
|
|
inputs_embeds=inputs_embeds,
|
|
use_cache=use_cache,
|
|
output_attentions=output_attentions,
|
|
output_hidden_states=output_hidden_states,
|
|
return_dict=return_dict,
|
|
)
|
|
hidden_states = transformer_outputs[0]
|
|
logits = self.score(hidden_states)
|
|
|
|
if input_ids is not None:
|
|
batch_size = input_ids.shape[0]
|
|
else:
|
|
batch_size = inputs_embeds.shape[0]
|
|
|
|
if self.config.pad_token_id is None and batch_size != 1:
|
|
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
|
|
if self.config.pad_token_id is None:
|
|
sequence_lengths = -1
|
|
else:
|
|
if input_ids is not None:
|
|
|
|
sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
|
|
sequence_lengths = sequence_lengths % input_ids.shape[-1]
|
|
sequence_lengths = sequence_lengths.to(logits.device)
|
|
else:
|
|
sequence_lengths = -1
|
|
|
|
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
|
|
|
|
loss = None
|
|
if labels is not None:
|
|
labels = labels.to(logits.device)
|
|
if self.config.problem_type is None:
|
|
if self.num_labels == 1:
|
|
self.config.problem_type = "regression"
|
|
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
|
self.config.problem_type = "single_label_classification"
|
|
else:
|
|
self.config.problem_type = "multi_label_classification"
|
|
|
|
if self.config.problem_type == "regression":
|
|
loss_fct = MSELoss()
|
|
if self.num_labels == 1:
|
|
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
|
else:
|
|
loss = loss_fct(pooled_logits, labels)
|
|
elif self.config.problem_type == "single_label_classification":
|
|
loss_fct = CrossEntropyLoss()
|
|
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
|
|
elif self.config.problem_type == "multi_label_classification":
|
|
loss_fct = BCEWithLogitsLoss()
|
|
loss = loss_fct(pooled_logits, labels)
|
|
if not return_dict:
|
|
output = (pooled_logits,) + transformer_outputs[1:]
|
|
return ((loss,) + output) if loss is not None else output
|
|
|
|
return SequenceClassifierOutputWithPast(
|
|
loss=loss,
|
|
logits=pooled_logits,
|
|
past_key_values=transformer_outputs.past_key_values,
|
|
hidden_states=transformer_outputs.hidden_states,
|
|
attentions=transformer_outputs.attentions,
|
|
)
|
|
|
|
|
|
@add_start_docstrings(
|
|
"""
|
|
The RWKV7Qwen2 Model transformer with a token classification head on top (a linear layer on top of the hidden-states
|
|
output) e.g. for Named-Entity-Recognition (NER) tasks.
|
|
""",
|
|
RWKV7QWEN2_START_DOCSTRING,
|
|
)
|
|
|
|
class RWKV7Qwen2ForTokenClassification(RWKV7Qwen2PreTrainedModel):
|
|
def __init__(self, config):
|
|
super().__init__(config)
|
|
self.num_labels = config.num_labels
|
|
self.model = RWKV7Qwen2Model(config)
|
|
if getattr(config, "classifier_dropout", None) is not None:
|
|
classifier_dropout = config.classifier_dropout
|
|
elif getattr(config, "hidden_dropout", None) is not None:
|
|
classifier_dropout = config.hidden_dropout
|
|
else:
|
|
classifier_dropout = 0.1
|
|
self.dropout = nn.Dropout(classifier_dropout)
|
|
self.score = nn.Linear(config.hidden_size, config.num_labels)
|
|
|
|
|
|
self.post_init()
|
|
|
|
def get_input_embeddings(self):
|
|
return self.model.embed_tokens
|
|
|
|
def set_input_embeddings(self, value):
|
|
self.model.embed_tokens = value
|
|
|
|
@add_start_docstrings_to_model_forward(RWKV7QWEN2_INPUTS_DOCSTRING)
|
|
@add_code_sample_docstrings(
|
|
checkpoint=_CHECKPOINT_FOR_DOC,
|
|
output_type=TokenClassifierOutput,
|
|
config_class=_CONFIG_FOR_DOC,
|
|
)
|
|
def forward(
|
|
self,
|
|
input_ids: Optional[torch.LongTensor] = None,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
labels: Optional[torch.LongTensor] = None,
|
|
use_cache: Optional[bool] = None,
|
|
output_attentions: Optional[bool] = None,
|
|
output_hidden_states: Optional[bool] = None,
|
|
return_dict: Optional[bool] = None,
|
|
) -> Union[Tuple, TokenClassifierOutput]:
|
|
r"""
|
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
|
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
|
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
|
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
|
"""
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
outputs = self.model(
|
|
input_ids,
|
|
attention_mask=attention_mask,
|
|
position_ids=position_ids,
|
|
past_key_values=past_key_values,
|
|
inputs_embeds=inputs_embeds,
|
|
use_cache=use_cache,
|
|
output_attentions=output_attentions,
|
|
output_hidden_states=output_hidden_states,
|
|
return_dict=return_dict,
|
|
)
|
|
sequence_output = outputs[0]
|
|
sequence_output = self.dropout(sequence_output)
|
|
logits = self.score(sequence_output)
|
|
|
|
loss = None
|
|
if labels is not None:
|
|
loss = self.loss_function(logits, labels, self.config)
|
|
|
|
if not return_dict:
|
|
output = (logits,) + outputs[2:]
|
|
return ((loss,) + output) if loss is not None else output
|
|
|
|
return TokenClassifierOutput(
|
|
loss=loss,
|
|
logits=logits,
|
|
hidden_states=outputs.hidden_states,
|
|
attentions=outputs.attentions,
|
|
)
|
|
|
|
|
|
@add_start_docstrings(
|
|
"""
|
|
The RWKV7Qwen2 Model transformer with a span classification head on top for extractive question-answering tasks like
|
|
SQuAD (a linear layer on top of the hidden-states output to compute `span start logits` and `span end logits`).
|
|
""",
|
|
RWKV7QWEN2_START_DOCSTRING,
|
|
)
|
|
|
|
class RWKV7Qwen2ForQuestionAnswering(RWKV7Qwen2PreTrainedModel):
|
|
base_model_prefix = "model"
|
|
|
|
|
|
def __init__(self, config):
|
|
super().__init__(config)
|
|
self.model = RWKV7Qwen2Model(config)
|
|
self.qa_outputs = nn.Linear(config.hidden_size, 2)
|
|
|
|
|
|
self.post_init()
|
|
|
|
def get_input_embeddings(self):
|
|
return self.model.embed_tokens
|
|
|
|
def set_input_embeddings(self, value):
|
|
self.model.embed_tokens = value
|
|
|
|
@add_start_docstrings_to_model_forward(RWKV7QWEN2_INPUTS_DOCSTRING)
|
|
def forward(
|
|
self,
|
|
input_ids: Optional[torch.LongTensor] = None,
|
|
attention_mask: Optional[torch.FloatTensor] = None,
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
start_positions: Optional[torch.LongTensor] = None,
|
|
end_positions: Optional[torch.LongTensor] = None,
|
|
output_attentions: Optional[bool] = None,
|
|
output_hidden_states: Optional[bool] = None,
|
|
return_dict: Optional[bool] = None,
|
|
**kwargs,
|
|
) -> Union[Tuple, QuestionAnsweringModelOutput]:
|
|
r"""
|
|
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
|
Labels for position (index) of the start of the labelled span for computing the token classification loss.
|
|
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
|
are not taken into account for computing the loss.
|
|
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
|
Labels for position (index) of the end of the labelled span for computing the token classification loss.
|
|
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
|
are not taken into account for computing the loss.
|
|
"""
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
outputs = self.model(
|
|
input_ids,
|
|
attention_mask=attention_mask,
|
|
position_ids=position_ids,
|
|
past_key_values=past_key_values,
|
|
inputs_embeds=inputs_embeds,
|
|
output_attentions=output_attentions,
|
|
output_hidden_states=output_hidden_states,
|
|
return_dict=return_dict,
|
|
)
|
|
|
|
sequence_output = outputs[0]
|
|
|
|
logits = self.qa_outputs(sequence_output)
|
|
start_logits, end_logits = logits.split(1, dim=-1)
|
|
start_logits = start_logits.squeeze(-1).contiguous()
|
|
end_logits = end_logits.squeeze(-1).contiguous()
|
|
|
|
loss = None
|
|
if start_positions is not None and end_positions is not None:
|
|
loss = self.loss_function(start_logits, end_logits, start_positions, end_positions, **kwargs)
|
|
|
|
if not return_dict:
|
|
output = (start_logits, end_logits) + outputs[2:]
|
|
return ((loss,) + output) if loss is not None else output
|
|
|
|
return QuestionAnsweringModelOutput(
|
|
loss=loss,
|
|
start_logits=start_logits,
|
|
end_logits=end_logits,
|
|
hidden_states=outputs.hidden_states,
|
|
attentions=outputs.attentions,
|
|
)
|
|
|