File size: 12,229 Bytes
717ad25 e9475a2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 |
---
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: Mujhe apne galtiyon ka ehsaas hai aur main unke liye maafi chahta hoon.
- text: Mujhe yeh step samajhne mein dikkat ho rahi hai, kya aap madad kar sakte hain?
- text: Mujhe abhi tak kuch update kyun nahi mila, yeh bahut frustrating hai.
- text: Is app ka loading time mujhe thoda zyada lagta hai.
- text: Kya aap mujhe is event ki timing bata sakte hain?
metrics:
- accuracy
pipeline_tag: text-classification
library_name: setfit
inference: true
base_model: MoritzLaurer/mDeBERTa-v3-base-mnli-xnli
model-index:
- name: SetFit with MoritzLaurer/mDeBERTa-v3-base-mnli-xnli
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: accuracy
value: 0.32
name: Accuracy
---
# SetFit with MoritzLaurer/mDeBERTa-v3-base-mnli-xnli
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [MoritzLaurer/mDeBERTa-v3-base-mnli-xnli](https://huggingface.co/MoritzLaurer/mDeBERTa-v3-base-mnli-xnli) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Model Details
### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [MoritzLaurer/mDeBERTa-v3-base-mnli-xnli](https://huggingface.co/MoritzLaurer/mDeBERTa-v3-base-mnli-xnli)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 19 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
### Model Labels
| Label | Examples |
|:------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4 | <ul><li>'Yeh rahin wo steps jisse aap apni payment kar sakte hain.'</li><li>'Kya aap mujhe yeh batane ka tarika thoda aasan kar sakte hain?'</li><li>'Is option ke madhyam se aap apni queries kaise solve kar sakte hain, jaan lijiye.'</li></ul> |
| 16 | <ul><li>'Aapke feedback ko humne dhyan mein rakha hai.'</li><li>'Yeh galti humare systems ki wajah se hui hai.'</li><li>'Mujhe is samasya ko suljhane mein zyada samay lena nahi chahiye tha.'</li></ul> |
| 8 | <ul><li>'Main aapko pareshan karne ke liye maafi chahta hoon.'</li><li>'Humein is samasya ke liye maafi chahiye.'</li><li>'Mere kaam se agar aapko takleef hui ho, toh mujhe maaf kar dijiye.'</li></ul> |
| 13 | <ul><li>'Mujhe yeh clarify karne ki zarurat hai ki agla step kya hai?'</li><li>'Mujhe pata karna hai ki maine jo complaint ki thi uska kya hua.'</li><li>'Mujhe bataye ki pehle kitne payments honge iss plan ke liye.'</li></ul> |
| 15 | <ul><li>'Yeh features sahi hai, lekin kuch aur additional functionalities honi chahiye.'</li><li>'Product ke size ki jankari hamesha saaf honi chahiye.'</li><li>'Main chahunga ki online form aur simple ho.'</li></ul> |
| 12 | <ul><li>'Mujhe product ke sath kuch samasya hai.'</li><li>'Mera phone charging nahi ho raha.'</li><li>'Mujhe courier service mein dikkat hai, report karna hai.'</li></ul> |
| 11 | <ul><li>'Mujhe samajh nahi aa raha, is offer mein koi chhupi shartein toh nahi hai?'</li><li>'Kis tarah se main feedback de sakta hoon?'</li><li>'Kya koi referral program hai jo mujhe join karna chahiye?'</li></ul> |
| 2 | <ul><li>'Item ke sath saathi accessories nahi mil rahe hain.'</li><li>'Aap logon ne jo samay liya, wo bilkul zyada tha.'</li><li>'Meri order delivery mein bahut der ho gayi hai.'</li></ul> |
| 18 | <ul><li>'Mujhe yeh bilkul pasand nahi hai ki meri baat ignore ki gayi.'</li><li>'Kam ke liye mera dosto ka support bahut sukhdayak hai.'</li><li>'Aaj ka din kaafi udaas beete raha hai.'</li></ul> |
| 14 | <ul><li>'Kya main kal ki delivery ko agle hafte reschedule kar sakta/sakti hoon?'</li><li>'Mujhe refund ke liye kya documents chahiye?'</li><li>'Kya main appointment ko dobara set kar sakta/sakti hoon?'</li></ul> |
| 7 | <ul><li>'Main aapko dhanyavad dena chahta hoon, aapne meri madad ki.'</li><li>'Aapne jo kiya, uske liye aapko sabse pehle prashansha milni chahiye.'</li><li>'Aapka samay dene ke liye abhaar.'</li></ul> |
| 3 | <ul><li>'Mujhe kisi event ke tickets ka status check karna hai.'</li><li>'Kya aap mujhe customer support number de sakte hain?'</li><li>'Main apne account ka balance kaise check kar sakta/sakti hoon?'</li></ul> |
| 5 | <ul><li>'Alvida, tumhara din acha rahe!'</li><li>'Hello! Aaj aap kaise hain?'</li><li>'Swagat hai! Kya main aapki kuch madad kar sakta hoon?'</li></ul> |
| 0 | <ul><li>'Mujhe kuch samajh nahi aa raha hai, kya mujhe thoda aur samjha sakte hain?'</li><li>'Agar main aisa karoon, to kya kuch badal jaayega? Main sure nahi hoon.'</li><li>'Yeh product ki warranty ki details clear nahi hain.'</li></ul> |
| 6 | <ul><li>'Chalo, alvida bolte hain!'</li><li>'Phir se baat karte hain!'</li><li>'Adieu, aapka din shubh ho!'</li></ul> |
| 17 | <ul><li>'Mere account mein login karne mein dikkat aa rahi hai, madad karein.'</li><li>'Mujhe apne account mein login karne mein madad chahiye.'</li><li>'Kya aap mujhe terms and conditions ke details de sakte hain?'</li></ul> |
| 10 | <ul><li>'Main aapki baat se sehmat hoon.'</li><li>'Mujhe yeh batayein ki meri booking sahi hai na?'</li></ul> |
| 9 | <ul><li>'Kya aap mujhe yeh concept aur clear kar sakte hain?'</li><li>'Mujhe yeh samajhne mein dikkat ho rahi hai, kya aap vyakhya de sakte hain?'</li></ul> |
| 1 | <ul><li>'Aaj dosto ke sath waqt bitana bahut acha laga.'</li><li>'Aaj baarish me bheegna bahut refreshing tha, mujhe yeh moment pasand aaya.'</li><li>'Aapka support bahut madadgar raha.'</li></ul> |
## Evaluation
### Metrics
| Label | Accuracy |
|:--------|:---------|
| **all** | 0.32 |
## Uses
### Direct Use for Inference
First install the SetFit library:
```bash
pip install setfit
```
Then you can load this model and run inference.
```python
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("rbojja/FT-mDeBERTa-v3-base-mnli-xnli")
# Run inference
preds = model("Kya aap mujhe is event ki timing bata sakte hain?")
```
<!--
### Downstream Use
*List how someone could finetune this model on their own dataset.*
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:-------|:----|
| Word count | 3 | 9.76 | 15 |
| Label | Training Sample Count |
|:------|:----------------------|
| 0 | 6 |
| 1 | 3 |
| 2 | 3 |
| 3 | 5 |
| 4 | 7 |
| 5 | 3 |
| 6 | 6 |
| 7 | 8 |
| 8 | 6 |
| 9 | 2 |
| 10 | 2 |
| 11 | 5 |
| 12 | 6 |
| 13 | 5 |
| 14 | 9 |
| 15 | 9 |
| 16 | 9 |
| 17 | 3 |
| 18 | 3 |
### Training Hyperparameters
- batch_size: (16, 2)
- num_epochs: (1, 16)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
### Training Results
| Epoch | Step | Training Loss | Validation Loss |
|:------:|:----:|:-------------:|:---------------:|
| 0.0017 | 1 | 0.2335 | - |
| 0.0853 | 50 | 0.2514 | - |
| 0.1706 | 100 | 0.1619 | - |
| 0.2560 | 150 | 0.1124 | - |
| 0.3413 | 200 | 0.078 | - |
| 0.4266 | 250 | 0.0623 | - |
| 0.5119 | 300 | 0.0576 | - |
| 0.5973 | 350 | 0.0421 | - |
| 0.6826 | 400 | 0.0391 | - |
| 0.7679 | 450 | 0.0386 | - |
| 0.8532 | 500 | 0.0302 | - |
| 0.9386 | 550 | 0.0245 | - |
### Framework Versions
- Python: 3.10.16
- SetFit: 1.1.1
- Sentence Transformers: 3.3.1
- Transformers: 4.46.3
- PyTorch: 2.5.1+cpu
- Datasets: 3.2.0
- Tokenizers: 0.20.3
## Citation
### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |