File size: 12,229 Bytes
717ad25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9475a2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
---
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: Mujhe apne galtiyon ka ehsaas hai aur main unke liye maafi chahta hoon.
- text: Mujhe yeh step samajhne mein dikkat ho rahi hai, kya aap madad kar sakte hain?
- text: Mujhe abhi tak kuch update kyun nahi mila, yeh bahut frustrating hai.
- text: Is app ka loading time mujhe thoda zyada lagta hai.
- text: Kya aap mujhe is event ki timing bata sakte hain?
metrics:
- accuracy
pipeline_tag: text-classification
library_name: setfit
inference: true
base_model: MoritzLaurer/mDeBERTa-v3-base-mnli-xnli
model-index:
- name: SetFit with MoritzLaurer/mDeBERTa-v3-base-mnli-xnli
  results:
  - task:
      type: text-classification
      name: Text Classification
    dataset:
      name: Unknown
      type: unknown
      split: test
    metrics:
    - type: accuracy
      value: 0.32
      name: Accuracy
---

# SetFit with MoritzLaurer/mDeBERTa-v3-base-mnli-xnli

This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [MoritzLaurer/mDeBERTa-v3-base-mnli-xnli](https://huggingface.co/MoritzLaurer/mDeBERTa-v3-base-mnli-xnli) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.

## Model Details

### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [MoritzLaurer/mDeBERTa-v3-base-mnli-xnli](https://huggingface.co/MoritzLaurer/mDeBERTa-v3-base-mnli-xnli)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 19 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)

### Model Labels
| Label | Examples                                                                                                                                                                                                                                           |
|:------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4     | <ul><li>'Yeh rahin wo steps jisse aap apni payment kar sakte hain.'</li><li>'Kya aap mujhe yeh batane ka tarika thoda aasan kar sakte hain?'</li><li>'Is option ke madhyam se aap apni queries kaise solve kar sakte hain, jaan lijiye.'</li></ul> |
| 16    | <ul><li>'Aapke feedback ko humne dhyan mein rakha hai.'</li><li>'Yeh galti humare systems ki wajah se hui hai.'</li><li>'Mujhe is samasya ko suljhane mein zyada samay lena nahi chahiye tha.'</li></ul>                                           |
| 8     | <ul><li>'Main aapko pareshan karne ke liye maafi chahta hoon.'</li><li>'Humein is samasya ke liye maafi chahiye.'</li><li>'Mere kaam se agar aapko takleef hui ho, toh mujhe maaf kar dijiye.'</li></ul>                                           |
| 13    | <ul><li>'Mujhe yeh clarify karne ki zarurat hai ki agla step kya hai?'</li><li>'Mujhe pata karna hai ki maine jo complaint ki thi uska kya hua.'</li><li>'Mujhe bataye ki pehle kitne payments honge iss plan ke liye.'</li></ul>                  |
| 15    | <ul><li>'Yeh features sahi hai, lekin kuch aur additional functionalities honi chahiye.'</li><li>'Product ke size ki jankari hamesha saaf honi chahiye.'</li><li>'Main chahunga ki online form aur simple ho.'</li></ul>                           |
| 12    | <ul><li>'Mujhe product ke sath kuch samasya hai.'</li><li>'Mera phone charging nahi ho raha.'</li><li>'Mujhe courier service mein dikkat hai, report karna hai.'</li></ul>                                                                         |
| 11    | <ul><li>'Mujhe samajh nahi aa raha, is offer mein koi chhupi shartein toh nahi hai?'</li><li>'Kis tarah se main feedback de sakta hoon?'</li><li>'Kya koi referral program hai jo mujhe join karna chahiye?'</li></ul>                             |
| 2     | <ul><li>'Item ke sath saathi accessories nahi mil rahe hain.'</li><li>'Aap logon ne jo samay liya, wo bilkul zyada tha.'</li><li>'Meri order delivery mein bahut der ho gayi hai.'</li></ul>                                                       |
| 18    | <ul><li>'Mujhe yeh bilkul pasand nahi hai ki meri baat ignore ki gayi.'</li><li>'Kam ke liye mera dosto ka support bahut sukhdayak hai.'</li><li>'Aaj ka din kaafi udaas beete raha hai.'</li></ul>                                                |
| 14    | <ul><li>'Kya main kal ki delivery ko agle hafte reschedule kar sakta/sakti hoon?'</li><li>'Mujhe refund ke liye kya documents chahiye?'</li><li>'Kya main appointment ko dobara set kar sakta/sakti hoon?'</li></ul>                               |
| 7     | <ul><li>'Main aapko dhanyavad dena chahta hoon, aapne meri madad ki.'</li><li>'Aapne jo kiya, uske liye aapko sabse pehle prashansha milni chahiye.'</li><li>'Aapka samay dene ke liye abhaar.'</li></ul>                                          |
| 3     | <ul><li>'Mujhe kisi event ke tickets ka status check karna hai.'</li><li>'Kya aap mujhe customer support number de sakte hain?'</li><li>'Main apne account ka balance kaise check kar sakta/sakti hoon?'</li></ul>                                 |
| 5     | <ul><li>'Alvida, tumhara din acha rahe!'</li><li>'Hello! Aaj aap kaise hain?'</li><li>'Swagat hai! Kya main aapki kuch madad kar sakta hoon?'</li></ul>                                                                                            |
| 0     | <ul><li>'Mujhe kuch samajh nahi aa raha hai, kya mujhe thoda aur samjha sakte hain?'</li><li>'Agar main aisa karoon, to kya kuch badal jaayega? Main sure nahi hoon.'</li><li>'Yeh product ki warranty ki details clear nahi hain.'</li></ul>      |
| 6     | <ul><li>'Chalo, alvida bolte hain!'</li><li>'Phir se baat karte hain!'</li><li>'Adieu, aapka din shubh ho!'</li></ul>                                                                                                                              |
| 17    | <ul><li>'Mere account mein login karne mein dikkat aa rahi hai, madad karein.'</li><li>'Mujhe apne account mein login karne mein madad chahiye.'</li><li>'Kya aap mujhe terms and conditions ke details de sakte hain?'</li></ul>                  |
| 10    | <ul><li>'Main aapki baat se sehmat hoon.'</li><li>'Mujhe yeh batayein ki meri booking sahi hai na?'</li></ul>                                                                                                                                      |
| 9     | <ul><li>'Kya aap mujhe yeh concept aur clear kar sakte hain?'</li><li>'Mujhe yeh samajhne mein dikkat ho rahi hai, kya aap vyakhya de sakte hain?'</li></ul>                                                                                       |
| 1     | <ul><li>'Aaj dosto ke sath waqt bitana bahut acha laga.'</li><li>'Aaj baarish me bheegna bahut refreshing tha, mujhe yeh moment pasand aaya.'</li><li>'Aapka support bahut madadgar raha.'</li></ul>                                               |

## Evaluation

### Metrics
| Label   | Accuracy |
|:--------|:---------|
| **all** | 0.32     |

## Uses

### Direct Use for Inference

First install the SetFit library:

```bash
pip install setfit
```

Then you can load this model and run inference.

```python
from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("rbojja/FT-mDeBERTa-v3-base-mnli-xnli")
# Run inference
preds = model("Kya aap mujhe is event ki timing bata sakte hain?")
```

<!--
### Downstream Use

*List how someone could finetune this model on their own dataset.*
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:-------|:----|
| Word count   | 3   | 9.76   | 15  |

| Label | Training Sample Count |
|:------|:----------------------|
| 0     | 6                     |
| 1     | 3                     |
| 2     | 3                     |
| 3     | 5                     |
| 4     | 7                     |
| 5     | 3                     |
| 6     | 6                     |
| 7     | 8                     |
| 8     | 6                     |
| 9     | 2                     |
| 10    | 2                     |
| 11    | 5                     |
| 12    | 6                     |
| 13    | 5                     |
| 14    | 9                     |
| 15    | 9                     |
| 16    | 9                     |
| 17    | 3                     |
| 18    | 3                     |

### Training Hyperparameters
- batch_size: (16, 2)
- num_epochs: (1, 16)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False

### Training Results
| Epoch  | Step | Training Loss | Validation Loss |
|:------:|:----:|:-------------:|:---------------:|
| 0.0017 | 1    | 0.2335        | -               |
| 0.0853 | 50   | 0.2514        | -               |
| 0.1706 | 100  | 0.1619        | -               |
| 0.2560 | 150  | 0.1124        | -               |
| 0.3413 | 200  | 0.078         | -               |
| 0.4266 | 250  | 0.0623        | -               |
| 0.5119 | 300  | 0.0576        | -               |
| 0.5973 | 350  | 0.0421        | -               |
| 0.6826 | 400  | 0.0391        | -               |
| 0.7679 | 450  | 0.0386        | -               |
| 0.8532 | 500  | 0.0302        | -               |
| 0.9386 | 550  | 0.0245        | -               |

### Framework Versions
- Python: 3.10.16
- SetFit: 1.1.1
- Sentence Transformers: 3.3.1
- Transformers: 4.46.3
- PyTorch: 2.5.1+cpu
- Datasets: 3.2.0
- Tokenizers: 0.20.3

## Citation

### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->