Ok, try this
Browse files- astro-20250209-seg.pt +0 -3
- astro-20250209-seg.onnx → astro-yolo11m-seg.onnx +0 -0
- config.json +8 -1
- inference.py +0 -17
- model-index.json +0 -10
- modelling_yolo.py +22 -0
- pytorch_model.bin +0 -3
- requirements.txt +6 -3
astro-20250209-seg.pt
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:c71465d7cd15546cdc30165ef23248b3cd8598b9d744c2383c643d3b79a1355a
|
3 |
-
size 45236271
|
|
|
|
|
|
|
|
astro-20250209-seg.onnx → astro-yolo11m-seg.onnx
RENAMED
File without changes
|
config.json
CHANGED
@@ -1 +1,8 @@
|
|
1 |
-
{
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"YOLOTransformersModel"
|
4 |
+
],
|
5 |
+
"model_type": "yolo-segmentation",
|
6 |
+
"onnx_model": "astro-yolo11m-seg.onnx",
|
7 |
+
"task": "image-segmentation"
|
8 |
+
}
|
inference.py
DELETED
@@ -1,17 +0,0 @@
|
|
1 |
-
from ultralytics import YOLO
|
2 |
-
from PIL import Image
|
3 |
-
import torch
|
4 |
-
|
5 |
-
# Load model from the same directory as this script
|
6 |
-
MODEL_PATH = "pytorch_model.bin"
|
7 |
-
|
8 |
-
class YOLOSegmentation:
|
9 |
-
def __init__(self):
|
10 |
-
self.model = YOLO(MODEL_PATH) # Load YOLO model
|
11 |
-
|
12 |
-
def __call__(self, image: Image.Image):
|
13 |
-
results = self.model(image) # Run inference
|
14 |
-
return results[0].tojson() # Convert output to JSON format
|
15 |
-
|
16 |
-
# Hugging Face Inference API expects a `model` variable
|
17 |
-
model = YOLOSegmentation()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
model-index.json
DELETED
@@ -1,10 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"model-index": [
|
3 |
-
{
|
4 |
-
"name": "YOLOv11 Segmentation Model",
|
5 |
-
"library_name": "ultralytics",
|
6 |
-
"pipeline_tag": "image-segmentation",
|
7 |
-
"tags": ["object-detection", "segmentation", "YOLO"]
|
8 |
-
}
|
9 |
-
]
|
10 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
modelling_yolo.py
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import onnxruntime as ort
|
3 |
+
from transformers import PreTrainedModel, PretrainedConfig
|
4 |
+
from PIL import Image
|
5 |
+
import numpy as np
|
6 |
+
|
7 |
+
class YOLOConfig(PretrainedConfig):
|
8 |
+
model_type = "yolo-segmentation"
|
9 |
+
|
10 |
+
class YOLOTransformersModel(PreTrainedModel):
|
11 |
+
config_class = YOLOConfig
|
12 |
+
|
13 |
+
def __init__(self, config):
|
14 |
+
super().__init__(config)
|
15 |
+
self.session = ort.InferenceSession(config.onnx_model, providers=["CPUExecutionProvider"])
|
16 |
+
|
17 |
+
def forward(self, images):
|
18 |
+
input_array = np.array(images.convert("RGB")).astype(np.float32)
|
19 |
+
input_array = np.expand_dims(input_array, axis=0) # Add batch dimension
|
20 |
+
|
21 |
+
outputs = self.session.run(None, {"images": input_array})
|
22 |
+
return outputs # Modify as needed to match Transformers format
|
pytorch_model.bin
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:c71465d7cd15546cdc30165ef23248b3cd8598b9d744c2383c643d3b79a1355a
|
3 |
-
size 45236271
|
|
|
|
|
|
|
|
requirements.txt
CHANGED
@@ -1,3 +1,6 @@
|
|
1 |
-
ultralytics
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
1 |
+
ultralytics
|
2 |
+
transformers
|
3 |
+
onnxruntime
|
4 |
+
torch
|
5 |
+
numpy
|
6 |
+
Pillow
|