Update README.md
Browse files
README.md
CHANGED
@@ -22,6 +22,57 @@ datasets:
|
|
22 |
# multi-qa-MiniLM-distill-onnx-L6-cos-v1
|
23 |
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and was designed for **semantic search**. It has been trained on 215M (question, answer) pairs from diverse sources. For an introduction to semantic search, have a look at: [SBERT.net - Semantic Search](https://www.sbert.net/examples/applications/semantic-search/README.html)
|
24 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
## Usage (Sentence-Transformers)
|
27 |
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
|
|
|
22 |
# multi-qa-MiniLM-distill-onnx-L6-cos-v1
|
23 |
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and was designed for **semantic search**. It has been trained on 215M (question, answer) pairs from diverse sources. For an introduction to semantic search, have a look at: [SBERT.net - Semantic Search](https://www.sbert.net/examples/applications/semantic-search/README.html)
|
24 |
|
25 |
+
## Usage (ONNX runtime)
|
26 |
+
Using optimum
|
27 |
+
|
28 |
+
```
|
29 |
+
from optimum.onnxruntime import ORTModelForFeatureExtraction
|
30 |
+
from transformers import AutoTokenizer
|
31 |
+
|
32 |
+
from transformers import Pipeline
|
33 |
+
import torch.nn.functional as F
|
34 |
+
import torch
|
35 |
+
|
36 |
+
# copied from the model card
|
37 |
+
def mean_pooling(model_output, attention_mask):
|
38 |
+
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
|
39 |
+
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
40 |
+
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
41 |
+
|
42 |
+
|
43 |
+
class SentenceEmbeddingPipeline(Pipeline):
|
44 |
+
def _sanitize_parameters(self, **kwargs):
|
45 |
+
# we don't have any hyperameters to sanitize
|
46 |
+
preprocess_kwargs = {}
|
47 |
+
return preprocess_kwargs, {}, {}
|
48 |
+
|
49 |
+
def preprocess(self, inputs):
|
50 |
+
encoded_inputs = self.tokenizer(inputs, padding=True, truncation=True, return_tensors='pt')
|
51 |
+
return encoded_inputs
|
52 |
+
|
53 |
+
def _forward(self, model_inputs):
|
54 |
+
outputs = self.model(**model_inputs)
|
55 |
+
return {"outputs": outputs, "attention_mask": model_inputs["attention_mask"]}
|
56 |
+
|
57 |
+
def postprocess(self, model_outputs):
|
58 |
+
# Perform pooling
|
59 |
+
sentence_embeddings = mean_pooling(model_outputs["outputs"], model_outputs['attention_mask'])
|
60 |
+
# Normalize embeddings
|
61 |
+
sentence_embeddings = F.normalize(sentence_embeddings, p=2, dim=1)
|
62 |
+
return sentence_embeddings
|
63 |
+
|
64 |
+
# load optimized model
|
65 |
+
onnx_path = "./models/cos-v1-best/"
|
66 |
+
model = ORTModelForFeatureExtraction.from_pretrained(onnx_path, file_name="model_quantized.onnx")
|
67 |
+
|
68 |
+
# create optimized pipeline
|
69 |
+
tokenizer = AutoTokenizer.from_pretrained(onnx_path, use_fast=True)
|
70 |
+
optimized_emb = SentenceEmbeddingPipeline(model=model, tokenizer=tokenizer)
|
71 |
+
pred1 = optimized_emb("Hello world!")
|
72 |
+
pred2 = optimized_emb("I hate everything.")
|
73 |
+
|
74 |
+
print(pred1[0].dot(pred2[0]))
|
75 |
+
```
|
76 |
|
77 |
## Usage (Sentence-Transformers)
|
78 |
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
|